Inorganic Chemistry
Article
Derived Oxidant of a Biomimetic Nonheme Iron Complex. Angew.
Chem., Int. Ed. 2009, 48, 1780−1783.
REFERENCES
■
(
1) Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry; Wiley-
VCH: Weinheim, 2003.
2) Sheldon, R. A.; Arends, I.; Hanefeld, U. Green Chemistry and
Catalysis; Wiley-VCH: Wienheim, 2007.
3) Bordeaux, M.; Galarneau, A.; Drone, J. Catalytic, Mild, and
Selective Oxyfunctionalization of Linear Alkanes: Current Challenges.
Angew. Chem., Int. Ed. 2012, 51, 10712−10723.
4) Roduner, E.; Kaim, W.; Sarkar, B.; Urlacher, V. B.; Pleiss, J.;
Glaser, R.; Einicke, W. D.; Sprenger, G. A.; Beifuss, U.; Klemm, E.;
Liebner, C.; Hieronymus, H.; Hsu, S. F.; Plietker, B.; Laschat, S.
Selective Catalytic Oxidation of C-H Bonds with Molecular Oxygen.
ChemCatChem 2013, 5, 82−112.
5) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr Oxygen
Activation at Mononuclear Nonheme Iron: Enzymes, Intermediates,
(
22) Martinho, M.; Blain, G.; Banse, F. Activation of dioxygen by a
mononuclear non-heme iron complex: characterization of a Fe(III)-
OOH) intermediate. Dalton Trans. 2010, 39, 1630−1634.
23) Lee, Y.-M.; Hong, S.; Morimoto, Y.; Shin, W.; Fukuzumi, S.;
(
(
(
(
Nam, W. Dioxygen Activation by a Non-Heme Iron(II) Complex:
Formation of an Iron(IV)−Oxo Complex via C−H Activation by a
Putative Iron(III)−Superoxo Species. J. Am. Chem. Soc. 2010, 132,
(
1
(
0668−10670.
24) Mandon, D.; Jaafar, H.; Thibon, A. Exploring the Oxygen
sensitivity of FeCl complexes with tris(2-pyridylmethyl)amine-type
2
ligands: O coordination and a quest for superoxide. New J. Chem.
2
2
(
011, 35, 1986−2000.
(
25) Badiei, Y. M.; Siegler, M. A.; Goldberg, D. P. O Activation by
2
Bis(imino)pyridine Iron(II)-Thiolate Complexes. J. Am. Chem. Soc.
011, 133, 1274−1277.
26) He, Y.; Goldsmith, R. Observation of a ferric hydroperoxide
and Models. Chem. Rev. 2004, 104, 939−986.
6) Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I.
2
(
(
Structure and chemistry of cytochrome P 450. Chem. Rev. 2005, 105,
253−2278.
7) Kovaleva, E. G.; Lipscomb, J. D. Versatility of biological non-
heme Fe(II) centers in oxygen activation reactions. Nat. Chem. Biol.
008, 4, 186−193.
8) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Enzymatic
functionalization of carbon-hydrogen bonds. Chem. Soc. Rev. 2011,
0, 2003−2021.
9) Poulos, T. L. Heme Enzyme Structure and Function. Chem. Rev.
014, 114, 3919−3962.
10) Que, L., Jr.; Tolman, W. B. Biologically inspired oxidation
catalysis. Nature 2008, 455, 333−340.
11) White, M. C. Adding Aliphatic C-H Bond Oxidations to
Synthesis. Science 2012, 335, 807−809.
12) Gelalcha, F. G. Biomimetic Iron-Catalyzed Asymmetric
complex during the non-heme iron catalysed oxidation of alkenes and
2
(
alkanes by O . Chem. Commun. 2012, 48, 10532−10534.
2
(
27) Li, F.; Van Heuvelen, K. M.; Meier, K. K.; Munck, E.; Que, L.,
̈
3
+
Jr Sc -Triggered Oxoiron(IV) Formation from O and its Non-Heme
2
2
(
3
+
3+
Iron(II) Precursor via a Sc −Peroxo−Fe Intermediate. J. Am.
Chem. Soc. 2013, 135, 10198−10201.
(28) Kim, S. O.; Sastri, C. V.; Seo, M. S.; Kim, J.; Nam, W. Dioxygen
4
(
2
(
Activation and Catalytic Aerobic Oxidation by a Mononuclear
Nonheme Iron(II) Complex. J. Am. Chem. Soc. 2005, 127, 4178−
4
(
179.
29) Bruijnincx, P. C. A.; van Koten, G.; Gebbink, R. J. M. K.
Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate
facial triad: recent developments in enzymology and modeling studies.
Chem. Soc. Rev. 2008, 37, 2716−2744.
(
(
(30) Shook, R. L.; Peterson, S. M.; Greaves, J.; Moore, C.;
Epoxidations: Fundamental Concepts, Challenges and Opportunities.
Rheingold, A. L.; Borovik, A. S. Catalytic Reduction of Dioxygen to
Water with a Monomeric Manganese Complex at Room Temper-
ature. J. Am. Chem. Soc. 2011, 133, 5810−5817.
Adv. Synth. Catal. 2014, 356, 261−299.
(13) Bryliakova, K. P.; Talsi, E. P. Active sites and mechanisms of
bioinspired oxidation with H O , catalyzed by non-heme Fe and
2
2
(31) Paine, T. K.; Que, L., Jr Dioxygen Activation by Biomimetic
related Mn complexes. Coord. Chem. Rev. 2014, 276, 73−96.
Iron(II) Complexes of α-Keto Acids and α-Hydroxy Acids. Struct.
Bonding (Berlin, Ger.) 2014, 160, 39−56.
(14) Oloo, W. N.; Que, L., Jr Bioinspired Nonheme Iron Catalysts
for C-H and C = C Bond Oxidation: Insights into the Nature of the
(32) Sallmann, M.; Limberg, C. Utilizing the Trispyrazolyl Borate
Metal-Based Oxidants. Acc. Chem. Res. 2015, 48, 2612−2621.
Ligand for the Mimicking of O -Activating Mononuclear Nonheme
(15) Zang, C.; Liu, Y.; Xu, Z.-J.; Tse, C.-W.; Guan, X.; Wei, J.;
2
Iron Enzymes. Acc. Chem. Res. 2015, 48, 2734−2743.
Huang, J.-S.; Che, C.-M. Highly Enantioselective Iron-Catalyzed cis-
(33) Sahu, S.; Goldberg, D. P. Activation of Dioxygen by Iron and
Dihydroxylation of Alkenes with Hydrogen Peroxide Oxidant via an
III
Manganese Complexes: A Heme and Nonheme Perspective. J. Am.
Chem. Soc. 2016, 138, 11410−11428.
Fe -OOH Reactive Intermediate. Angew. Chem., Int. Ed. 2016, 55,
1
0253−10257.
16) Talsi, E. P.; Bryliakov, K. P. Chemo- and stereoselective C-H
oxidations and epoxidations/cis-dihydroxylations with H O , cata-
(34) Funabiki, T. Functional model oxygenations by nonheme iron
(
complexes. In Advances in Catalytic Activation of Dioxygen by Metal
Complexes; Simandi, L. I., Ed.; Kluwer Academic Publishers:
Dordrecht, 2003; pp 157−226.
35) Schroder, K.; Join, B.; Amali, A. J.; Junge, K.; Ribas, X.; Costas,
2
2
́
lyzed by non-heme iron and manganese complexes. Coord. Chem. Rev.
012, 256, 1418−1434.
17) Serrano-Plana, J.; Oloo, W. N.; Acosta-Rueda, L.; Meier, K. K.;
Verdejo, B.; García-Espana, E.; Basallote, M. G.; Munck, E.; Que, L.,
2
(
̈
(
M.; Beller, M. A Biomimetic Iron Catalyst for the Epoxidation of
Olefins with Molecular Oxygen at Room Temperature. Angew. Chem.,
Int. Ed. 2011, 50, 1425−1429.
̃
̈
Jr.; Company, A.; Costas, M. Trapping a Highly Reactive Nonheme
Iron Intermediate That Oxygenates Strong CH Bonds with
Stereoretention. J. Am. Chem. Soc. 2015, 137, 15833−15842.
(36) Paria, S.; Chatterjee, S.; Paine, T. K. Reactivity of an Iron−
Oxygen Oxidant Generated upon Oxidative Decarboxylation of
Biomimetic Iron(II) α-Hydroxy Acid Complexes. Inorg. Chem.
2014, 53, 2810−2821.
3
+
(
18) Kal, S.; Draksharapu, A.; Que, L., Jr Sc (or HClO ) Activation
4
III
of a Nonheme Fe −OOH Intermediate for the Rapid Hydroxylation
of Cyclohexane and Benzene. J. Am. Chem. Soc. 2018, 140, 5798−
5804.
(37) Chatterjee, S.; Paine, T. K. Olefin cis-Dihydroxylation and
Aliphatic C-H Bond Oxygenation by a Dioxygen-Derived Electro-
philic Iron-Oxygen Oxidant. Angew. Chem., Int. Ed. 2015, 54, 9338−
9342.
(38) Chatterjee, S.; Paine, T. K. Hydroxylation versus Halogenation
of Aliphatic C-H Bonds by a Dioxygen-Derived Iron−Oxygen
Oxidant: Functional Mimicking of Iron Halogenases. Angew. Chem.,
Int. Ed. 2016, 55, 7717−7722.
(39) Paria, S.; Que, L., Jr.; Paine, T. K. Oxidative Decarboxylation of
Benzilic Acid by a Biomimetic Iron(II) Complex: Evidence for an
(
19) Thibon, A.; England, J.; Martinho, M.; Young, V. G., Jr.; Frisch,
J. R.; Guillot, R.; Girerd, J.-J.; Munck, E.; Que, L., Jr.; Banse, F.
̈
Proton- and Reductant-Assisted Dioxygen Activation by a Nonheme
Iron(II) Complex to Form an Oxoiron(IV) Intermediate. Angew.
Chem., Int. Ed. 2008, 47, 7064−7067.
(20) Hong, S.; Lee, Y.-M.; Shin, W.; Fukuzumi, S.; Nam, W.
Dioxygen Activation by Mononuclear Nonheme Iron(II) Complexes
Generates Iron−Oxygen Intermediates in the Presence of an NADH
Analogue and Proton. J. Am. Chem. Soc. 2009, 131, 13910−13911.
(
21) Mukherjee, A.; Martinho, M.; Bominaar, E. L.; Mu
̈
nck, E.; Que,
Iron(IV − Oxo−Hydroxo Oxidant from O . Angew. Chem., Int. Ed.
2
L., Jr Shape-Selective Interception by Hydrocarbons of the O -
2011, 50, 11129−11132.
2
I
Inorg. Chem. XXXX, XXX, XXX−XXX