R.R. Fernandes et al. / Applied Catalysis A: General 402 (2011) 110–120
119
3/AcOH and 4/AcOH, which use acetic acid as additive instead of the
stronger trifluoroacetic acid (compare entries 9 and 10, Table 4).
[2] E.D. Derouane, F. Parmon, F. Lemos, F. Ramôa, Ribeiro (Eds.), Sustainable
Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and
Opportunities, NATO Science Series, vol. 191, Kluwer Academic, Dordrecht,
2005.
[3] J.-E. Bäckvall, Modern Oxidation Methods, Wiley-VCH, Weinheim, 2004.
[4] G.B. Shul’pin, Org. Biomol. Chem. 8 (2010) 4217–4228.
[5] S.J. Lippard, J.M. Berg, Principles of Bioinorganic Chemistry, University Science
Books, Mill Valley, 1994.
[6] W. Kaim, B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the
Chemistry of Life, John Wiley & Sons, Chichester, 1994.
[7] J.J.R. Fraústo da Silva, R.J.P. Williams, The Biological Chemistry of the Elements
– The Inorganic Chemistry of Life, second ed., Oxford University Press, Oxford,
2001.
[8] H.-B. Kraatz, N. Metzler-Nolte, Concepts and Models in Bioinorganic Chemistry,
Wiley-VCH, Weinheim, 2006.
[9] M. Costas, K. Chen, L. Que Jr., Coord. Chem. Rev. 200–202 (2000) 517–544.
[10] M. Costas, M.P. Mehn, M.P. Jensen, L. Que Jr., Chem. Rev. 104 (2004)
939–986.
4. Conclusion
In the present work, we evaluated a series of copper(II), iron(II)
and vanadium(III) complexes bearing a N2S2-type ligand as catalyst
precursors for the oxidation of cyclohexane and various alcohols
under mild conditions, using H2O2 and t-BuOOH as oxidants. It
was found that the addition of an acid promoter produces opposing
effects on the Cu- or Fe-/V-based systems and that minor modifica-
tions in the type of acid co-catalyst used can influence greatly the
catalytic activity and the oxygenated product distributions.
From all the catalysts screened, the iron-based systems 3/TFA
and 4/HOTf are the most promising ones and their activities are
comparable to state-of-the-art systems for both cyclohexane and
1-phenyethanol oxidations, thus demonstrating that S-containing
ligands can also be used to broaden the collection of oxidation cata-
lysts precursors, despite of the concerns regarding their stability in
the harsh oxidizing conditions. To this regard, it should be under-
lined the importance not only of the catalyst precursor structure
but also of the reaction conditions to develop an efficient catalytic
system, since in an previous study an analogous iron triflate com-
plex bearing Py2S2 failed as a catalyst for cyclohexane oxidations
with H2O2 [29].
Very good yields are achieved for both cyclohexane (maximum
yield of ca. 38% and TON up to 1450) and 1-phenylethanol (maxi-
mum yield of ca. 80% and TOF up to 8580) oxidations.
The 1-phenylethanol oxidation with t-BuOOH occurs very
rapidly under microwave (MW) irradiation and, just after 5 min,
ca. 75% of all substrate is converted to acetophenone.
The experimental results evidence the extensive involvement of
radical species, namely HO•, R• and ROO•, as confirmed by the large
formation of CyOOH in the cyclohexane oxidation reaction and by
the pronounced yield drop when diphenylamine (radical trapping
agent) was added to both cyclohexane and 1-phenylethanol oxida-
tions.
[11] M. Fontecave, S. Menage, C. Duboc-Toia, Coord. Chem. Rev. 178–180 (1998)
1552–1572.
[12] L. Que, W.B. Tolman, Nature 455 (2008) 333–340.
[13] G. Roelfes, R. M- Lubben, L.Que. Hage Jr., B.L. Feringa, Chem. Eur. J. 6 (2000)
2152–2159.
[14] K. Chen, M. Costas, J. Kim, A.K. Tipton, L. Que Jr., J. Am. Chem. Soc. 124 (2002)
3026–3035.
[15] R. Mas-Balleste, L. Que, J. Am. Chem. Soc. 129 (2007) 15964–15972.
[16] L. Gomez, I. Garcia-Bosch, A. Company, J. Benet-Buchholz, A. Polo, X. Sala, X.
Ribas, M. Costas, Angew. Chem. Int. Ed. 48 (2009) 5720–5723.
[17] J. England, G.J.P. Britovsek, N. Rabadia, A.J.L. White, Inorg. Chem. 46 (2007)
3752–3767.
[18] J. England, C.R. Davies, M. Banaru, A.J.P. White, G.J.P. Britovsek, Adv. Synth. Catal.
350 (2008) 883–897.
[19] A.M. Kirillov, M.N. Kopylovich, M.V. Kirillova, M. Haukka, M.F.C.G. da Silva, A.J.L.
Pombeiro, Angew. Chem., Int. Ed. 44 (2005) 4345–4349.
[20] A.M. Kirillov, M.N. Kopylovich, M.V. Kirillova, E.Y. Karabach, M. Haukka, M.F.C.G.
da Silva, A.J.L. Pombeiro, Adv. Synth. Catal. 348 (2006) 159–174.
[21] M.V. Kirillova, Y.N. Kozlov, L.S. Shul’pina, O.Y. Lyakin, A.M. Kirillov, E.P. Talsi,
A.J.L. Pombeiro, G.B. Shul’pin, J. Catal. 268 (2009) 26–38.
[22] T.E.S. Silva, E. Alegria, L. Martins, A.J.L. Pombeiro, Adv. Synth. Catal. 350 (2008)
706–716.
[23] G.S. Mishra, T.F.S. Silva, L. Martins, A.J.L. Pombeiro, Pure Appl. Chem. 81 (2009)
1217–1227.
[24] T.F.S. Silva, K.V. Luzyanin, M.V. Kirillova, M.F.G. da Silva, L.M.D.R.S. Martins, A.J.L.
Pombeiro, Adv. Synth. Catal. 352 (2010) 171–187.
[25] G.B. Shul’pin, G.V. Nizova, Y.N. Kozlov, L.G. Cuervo, G. Suss-Fink, Adv. Synth.
Catal. 346 (2004) 317–332.
[26] A.M.I. Jayaseeli, S. Rajagopal, J. Mol. Catal. A 309 (2009) 103–110.
[27] K. Bahrami, M.M. Khodaei, M. Soheilizad, Tetrahedron Lett. 51 (2010)
4843–4846.
Given the promising results obtained with these pyridine
thioether systems, further studies will be devoted to the syntheses
of novel N,S-ligands and complexes, and the peroxidative oxidation
investigations will be pursued under different conditions, namely
by extending our studies under MW irradiation to other types of
oxidation reactions and substrates.
[28] R.R. Fernandes, M.V. Kirillova, J.A.L. da Silva, J.J.R. Fraústo da Silva, A.J.L.
Pombeiro, Appl. Catal. A: Gen. 353 (2009) 107–112.
[29] J. England, R. Gondhia, L. Bigorra-Lopez, A.R. Petersen, A.J.P. White, G.J.P.
Britovsek, Dalton Trans. (2009) 5319–5334.
[30] T. Pandiyan, M.A.R. Enriquez, S. Bernes, C.D. de Bazua, Polyhedron 18 (1999)
3383–3390.
[31] H. Nekola, D. Wang, C. Gruning, J. Gatjens, A. Behrens, D. Rehder, Inorg. Chem.
41 (2002) 2379–2384.
[32] Bruker, APEX2 & SAINT. Bruker, AXS Inc., Madison, Wisconsin, USA, 2004.
[33] G.M. Sheldrick, Acta Crystallogr. Sect. A 64 (2008) 112–122.
[34] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
Acknowledgements
[35] G.B. Shul’pin, J. Mol. Catal. A 189 (2002) 39–66.
[36] G.B. Shul’pin, C. R. Chim. 6 (2003) 123–178.
[37] P. Castan, Transit. Met. Chem. 6 (1981) 14–17.
[38] A. Ahmedova, P. Marinova, G. Tyuliev, M. Mitewa, Inorg. Chem. Commun. 11
(2008) 545–548.
[39] S. Tanase, P. Marques-Gallego, W.R. Browne, R. Hage, E. Bouwman, B.L. Feringa,
J. Reedijk, Dalton Trans. (2008) 2026–2033.
[40] S. Tanase, C. Foltz, R. de Gelder, R. Hage, E. Bouwman, J. Reedijk, J. Mol. Catal.
A: Chem. 225 (2005) 161–167.
[41] G.B. Shul’pin, M.C. Guerreiro, U. Schuchardt, Tetrahedron 52 (1996)
13051–13062.
[42] L.S. Shul’pina, M.V. Kirillova, A.J.L. Pombeiro, G.B. Shul’pin, Tetrahedron 65
(2009) 2424–2429.
This work has been partially supported by the Fundac¸ ão para
a Ciência e a Tecnologia (FCT), Portugal, and its PPCDT program
(FEDER funded). J. L. expresses gratitude to the FCT and the Insti-
tuto Superior Técnico (IST) for his research contracts (CIÊNCIA
2007 program). R.R.F. expresses gratitude to FCT for a fellowship
(grant SFRH/BD/31150/2006). The authors gratefully acknowledge
the Portuguese NMR Network (IST-UTL Centre) for providing access
to the NMR facility. Thanks are also due to Dr. M.C. Vaz (elemental
analysis) and Dr. C. Oliveira (ESI MS) for the analytical services.
[43] M.S. Chen, M.C. White, Science 327 (2010) 566–571.
[44] M.S. Chen, M.C. White, Science 318 (2007) 783–787.
[45] M.C. White, A.G. Doyle, E.N. Jacobsen, J. Am. Chem. Soc. 123 (2001) 7194–
7195.
[46] G.V. Nizova, B. Krebs, G. Suss-Fink, S. Schindler, L. Westerheide, L. Gonzalez
Cuervo, G.B. Shul’pin, Tetrahedron 58 (2002) 9231–9237.
[47] G.B. Shul’pin, D. Attanasio, L. Suber, J. Catal. 142 (1993) 147–152.
[48] G.B. Shul’pin, R.S. Drago, M. Gonzalez, Russ. Chem. Bull. 45 (1996) 2386–2388.
[49] G.B. Shul’pin, Y.N. Kozlov, G.V. Nizova, G. Suss-Frank, S. Stanislas, A.
Kitaygorodskiy, V.S. Kulikova, J. Chem. Soc. Perkin Trans. 2 (2001) 1351–
1371.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] A.E. Shilov, G.B. Shul’pin, Activation and Catalytic Reactions of Saturated Hydro-
carbons in the Presence of Metal Complexes, Kluwer Academic Publishers,
Dordrecht, 2000.
[50] M.V. Kirillova, M.L. Kuznetsov, V.B. Romakh, L.S. Shul’pina, J.J.R. Fraústo da Silva,
A.J.L. Pombeiro, G.B. Shul’pin, J. Catal. 267 (2009) 140–157.