2
86
Y. Guo et al. / Catalysis Today 156 (2010) 282–287
Foundation (Grant No. 2008D-5006-05-06), Program for Liaoning
Excellent Talents in University (Grant No. LR201008) and Univer-
sities Science & Research Project of Liaoning Province Education
Department (Grant No. 2009S019) are gratefully acknowledged.
References
[
[
1] W.L. Luyben, Ind. Eng. Chem. Res 49 (2010) 719.
2] G.I. Panov, G.A. Sheveleva, A.S. Kharitonov, V.N. Romannikov, L.A. Vostrikova,
Appl. Catal. A: Gen. 82 (1992) 31.
[
[
[
[
[
3] A. Ribera, I.W.C.E. Arends, S. de Vries, J. Perez-Ramirez, R.A. Sheldon, J. Catal.
195 (2000) 287.
4] K. Nomiya, H. Yanagibayashi, C. Nozaki, K. Kondoh, E. Hiramatsu, Y. Shimizu, J.
Mol. Catal. A: Chem. 114 (1996) 181.
5] L. Balducci, D. Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, R. Tassinari, R. Ungarelli,
Angew. Chem. 115 (2003) 5087.
6] D. Bianchi, L. Balducci, R. Bortolo, R. D’Aloisio, M. Ricci, G. Spanò, R. Tassinari,
C. Tonini, R. Ungarelli, Adv. Synth. Catal. 349 (2007) 979.
7] D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci, R. Vignola, Angew. Chem. 39 (2000)
4
321.
Fig. 8. Catalytic stability for the Pd–silicalite-1 membrane in the reaction versus
[8] K. Otsuka, I. Yamanaka, H. Hosokawa, Nature 345 (1990) 697.
time on stream at 473 K.
[9] A. Kunai, T. Kitano, Y. Kuroda, J. Li-Fen, K. Sasaki, Catal. Lett. 4 (1990) 139.
10] T. Miyake, M. Hamada, Y. Sasaki, M. Oguri, Appl. Catal. A: Gen. 131 (1995) 33.
11] H. Ehrich, H. Berndt, M. Pohl, K. Jahnisch, M. Baerns, Appl. Catal. A: Gen. 230
[
[
(
2002) 271.
ite membrane at 473 K and trans-membrane pressure difference
of 100 kPa. The H2 flux of the Pd–Sil-1 composite membrane
was monitored over the 180 h and plotted in Fig. 7a. A flux of
[
12] T. Tatsumi, A method for manufacturing an aromatic hydroxy compound, Japan
Patent 5-320082 (1993).
[13] N.I. Kuznetsova, L.I. Kuznetsova, V.A. Likholobov, G.P. Pez, Catal. Today 99
(2005) 193.
14] W. Laufer, W.F. Hoelderich, Chem. Commun. 2 (2002) 1684.
15] W. Laufer, J.P.M. Niederer, W.F. Hoelderich, Adv. Synth. Catal. 344 (2002) 1084.
−
2
−1
was maintained over the entire period.
0.075 mol m
s
[
[
The Pd–Sil-1 composite membrane is also stable for the benzene
hydroxylation reaction. The H2 flux before and after the reaction
was measured and plotted in Fig. 7b. A typical reaction as shown in
Fig. 8 often lasted for 46 h and permeation results in Fig. 7b shows
that the H2 flux was relatively constant before and after the reac-
tion. This indicates that the membrane was stable and no coking
occurred during the reaction. SEM analysis of the membrane after
reaction did not show significant change in membrane microstruc-
ture. Indeed, the reaction is stable as shown in Fig. 8. The benzene
conversion and phenol yield remained constant at ca. 5% and 3%,
[16] S. Niwa, M. Eswaramoorty, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, F. Mizukami,
Science 295 (2002) 105.
[
17] K. Sato, T. Hanaoka, S. Niwa, C. Stefan, T. Namba, F. Mizukami, Catal. Today 104
2005) 260.
[18] N. Itoh, S. Niwa, F. Mizukami, T. Inoue, A. Igarashi, T. Namba, Catal. Commun. 4
2003) 243.
(
(
[
19] K. Sato, T. Hanaoka, S. Hamakawa, M. Nishioka, K. Kobayashi, T. Inoue, T. Namba,
F. Mizukami, Catal. Today 118 (2006) 57.
[20] G.D. Vulpescu, M. Ruitenbeek, L.L. van Lieshout, L.A. Correia, D. Meyer, P.P.A.C.
Pex, Catal. Commun. 5 (2004) 347.
[
21] M.H. Sayyar, R.J. Wakeman, Comparing two new routes for benzene hydroxy-
lation, Chem. Eng. Res. Des. 86 (2008) 517.
respectively during the reaction at 473 K and H /O = 4.7. This indi-
2
2
[22] S.L. Shu, Y. Huang, X.J. Hu, Y.Q. Fan, N.P. Xu, J. Phys. Chem. C 113 (2009) 19618.
[23] S.-Y. Ye, S. Hamakawa, S. Tanaka, K. Sato, M. Esashi, F. Mizukami, Chem. Eng. J.
cates that hydrogen permeation across the membrane is constant
during the reaction.
155 (2009) 829.
[
[
24] Y. She, J. Han, Y.H. Ma, Catal. Today 67 (2001) 43.
25] K.L. Yeung, R. Aravind, J. Szegner, A. Varma, Stud. Surf. Sci. Catal. 101A-B (1996)
1
349.
4
. Concluding remarks
[
[
26] K.L. Yeung, S. Christiansen, A. Varma, J. Membr. Sci. 159 (1999) 107.
27] A. Basile, F. Gallucci, L. Paturzo, Catal. Today 104 (2005) 251.
A new Pd–Sil-1 composite membrane was prepared from Pd/Sil-
co-seeds by first growing a Sil-1 zeolite to serve as intermediate
[28] Y.S. Cheng, M.A. Pe n˜ a, J.L. Fierro, D.C.W. Hui, K.L. Yeung, J. Membr. Sci. 204
(
2002) 329.
1
[
29] L. Zhang, H.Y. Xu, W.Z. Li, J. Membr. Sci. 277 (2006) 85.
support layer before depositing the palladium membrane. The
palladium deposition occurred at the gaps formed between inter-
[
30] T.A. Peters, M. Stange, H. Klette, R. Bredesen, J. Membr. Sci. 316 (2008) 119.
[31] G. Chiappettaa, G. Clarizia, E. Drioli, Chem. Eng. J. 124 (2006) 29.
[32] Y.S. Cheng, M.A. Pe n˜ a, K.L. Yeung, J. Taiwan Inst. Chem. Eng. 40 (2009) 281.
0
growing zeolites and proceeds from deep within the Pd /Sil-1
[
[
33] P. Quicker, V. Höllein, R. Dittmeyer, Catal. Today 56 (2000) 21.
34] S. Melada, F. Pinna, G. Strukul, S. Perathoner, G. Centi, J. Catal. 235 (2005) 241.
co-seed layer before emerging on the surface layer forming the Pd
protrusions that anchored the film to the support. This gave the
Pd–Sil-1 membrane good stability that can tolerate low tempera-
ture separation and reaction. The direct hydroxylation of benzene
was conducted in the Pd–Sil-1 membrane reactor. An optimum
H /O feed molar ratio was identified at reaction temperature of
[35] Y. Guo, X.F. Zhang, H.Y. Zou, H.O. Liu, J.Q. Wang, K.L. Yeung, Chem. Commun.
2009) 5898.
(
[
[
36] W.C. Wong, L.T.Y. Au, C. Tellez, K.L. Yeung, J. Membr. Sci. 191 (2001) 143.
37] X.F. Zhang, H. Liu, K.L. Yeung, Mater. Chem. Phys. 96 (2006) 42.
[38] W.C. Wong, L.T.Y. Au, P.S. Lau, C. Tellez, K.L. Yeung, J. Membr. Sci. 193 (2001)
41.
39] L.T.Y. Au, W.Y. Mui, P.S. Lau, C. Tellez, K.L. Yeung, Micropor. Mesopor. Mater. 47
2001) 203.
1
2
2
[
4
73 K, but the benzene conversion and phenol yield remain low
(
compared to literature report. We believe that this is mainly due to
poorer mass transfer in the large diameter membrane used in this
study compared to capillary membranes employed in prior works
[40] L.T.Y. Au, K.L. Yeung, J. Membr. Sci. 194 (2001) 33.
[41] Y.S. Cheng, K.L. Yeung, J. Membr. Sci. 182 (2001) 195.
[
[
[
42] Y.S. Cheng, K.L. Yeung, J. Membr. Sci. 158 (1999) 127.
43] E.S.M. Lai, L.T.Y. Au, K.L. Yeung, Micropor. Mesopor. Mater. 54 (2002) 63.
44] S. Yan, H. Maeda, K. Kusakabe, S. Morooka, Ind. Eng. Chem. Res. 33 (1994) 616.
[
16–20], and the higher hydrogen flux through the Pd–Sil-1 mem-
brane that results in higher water production that could compete
with adsorption sites on the membrane surface. Improvement in
mass transfer rates could be achieved through miniaturization as
demonstrated in the previous work by the authors [50–64].
[45] X.L. Pan, G.X. Xiong, S.S. Sheng, N. Stroh, H. Brunner, Chem. Commun. 1 (2001)
536.
2
[
[
46] J.P. Collins, J.D. Way, Ind. Eng. Chem. Res. 32 (1993) 3006.
47] T.L. Ward, T. Dao, J. Membr. Sci. 153 (1999) 211.
[48] T.C. Huang, M.C. Wei, H.L. Chen, Sep. Sci. Tech. 36 (2001) 199.
[
49] P. Landon, P.J. Collier, A.F. Carley, D. Chadwick, A.J. Papworth, A. Burrows, C.J.
Kielyd, G.J. Hutchings, Phys. Chem. Chem. Phys. 5 (2003) 1917.
Acknowledgements
[50] J.L.H. Chau, C. Tellez, K.L. Yeung, K.-C. Ho, J. Membr. Sci. 164 (2000) 257.
[
[
[
51] J.L.H. Chau, Y.S.S. Wan, A. Gavriilidis, K.L. Yeung, Chem. Eng. J. 88 (2002) 187.
52] J.L.H. Chau, K.L. Yeung, Chem. Commun. 2 (2002) 960.
53] J.L.H. Chau, A.Y.L. Leung, K.L. Yeung, Lab-on-a-Chip 3 (2003) 53.
Financial supports from the National Natural Sciences Foun-
dation of China (Grant No. 20673017), PetroChina Innovation
[54] A.Y.L. Leung, K.L. Yeung, Chem. Eng. Sci. 59 (2004) 4809.