Helvetica Chimica Acta
10.1002/hlca.201800214
ꢀ
ꢁꢂꢃꢁꢄꢅꢆꢇꢀ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
[
[
[
[
8] S. Lin, X. Yang, S. Jia, A. M. Weeks, M. Hornsby, P. S. Lee, R. V. Nichiporuk, A. T. Iavarone, J. A. Wells, F. D. Toste, C. J.
Chang, ’Redox-based reagents for chemoselective methionine bioconjugation’, Science, 2017, 335, 597–602.
9] C. P. R. Hackenberger, D. Schwarzer, ’Chemoselective Ligation and Modification Strategies for Peptides and Proteins’, Angew. Chem.
Int. Ed. 2008, 47, 10030–10074.
10] K. Wals, H. Ovaa, ’Unnatural amino acid incorporation in E. coli: current and future applications in the designe of therapeutic proteins’,
Front. Chem. 2014, 2, 15.
11] F. Saito, H. Noda, J. W. Bode, ’Critical evaluation and rate constants of chemoselective ligation reactions for stoichiometric conjugations
in water’ ACS Chem. Biol. 2015, 10, 1026–1033.
ꢀ
[
[
[
12] A. W. Jacobitz, M .D. Kattke, J. Wereszczynski, R. T. Clubb, ’Sortase transpeptidase: Structural biology and catalytic mechanism’, Adv.
Protein Chem. Struct. Biol. 2017, 109, 223-264.
13] E. M. Sletten, C. R. Bertozzi, ’Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality’, Angew. Chem. Int. Ed. 2009, 48,
6
974–6998.
14] G. A. Molander, J. Raushel, N. M. Ellis, ’Synthesis of an acyltrifluoroborate and its fusion with azides to form amides’, J. Org. Chem.
010, 75, 4304–4306.
2
[
[
15] A. M. Dumas, J. W. Bode, ’Synthesis of acyltrifluoroborates’, Org. Lett. 2012,14, 2138–2141.
16] A. M. Dumas, G. A. Molander, G. A., J. W. Bode, ’Amide-forming ligation of acyltrifluoroborates and hydroxylamines in water’, Angew.
Chem. Int. Ed. 2012, 51, 5683–5686.
[17] H. Noda, G. Erős, J. W. Bode, ’Rapid ligations with equimolar reactants in water with the potassium acyltrifluoroborate (KAT) amide-
formation’, J. Am. Chem. Soc. 2014, 136, 5611–561.
[18] C. J. White, J. W. Bode, ’Pegylation and dimerization of expressed proteins under near equimolar conditions with potassium 2-pyridyl
acyltrifluoroborates’, ACS Cent. Sci. 2018, 4, 197–206.
[
[
19] J. W. Bode ’Chemical protein synthesis with the α-ketoacid–hydroxylamine ligation’, Acc. Chem. Res. 2017, 50, 2104–2115.
20] F. Thuaud, F. Rohrbacher, A. Zwicky, J. B. Bode, ’Photoprotected peptide α-ketoacids and hydroxylamines for iterative and one-pot
KAHA Ligations: Synthesis of NEDD8’, Helv. Chim. Acta 2016, 99, 868–894.
[
[
[
[
[
21] S. Jiang, P. Li, C. C. Lai, J. A. Kelley, P. P. Roller, ’Design and concise synthesis of fully protected analogues of l-γ-carboxyglutamic
acid’, J. Org. Chem. 2006, 71, 7307–7314.
22] K. Kitahara, T. Toma, J. Shimokawa, T. Fukuyama, ’O-TBS-N-tosylhydroxylamine: A reagent for facile conversion of alcholols to
oximes’, Org. Lett. 2008, 10, 2259-2261.
23] V. P. Sinha, S. Choi, K. Mace, K. P. Yeo, D. C. Howey, ’Single-dose pharmacokinetics and glucodynamics of the novel, long-acting basal
insulin LY2605541 in healthy subjects’, J.Clin. Pharmacol., 2014, 54, 792–799.
24] P. K. Jain, D. Karunakaran, S. H. Friedman, ’Construction of a photoactivated insulin depot’, Angew. Chem. Int. Ed. 2013, 52, 1404 –
1
409.
25] B. Kolesinska, J. Wasko, Z. Kaminski, B. Geueke, H.-P. E. Kohler, D. Seebach, ’Labeling and protecting N‐terminal protein positions
by β‐peptidyl aminopeptidase‐catalyzed attachment of β‐amino‐acid residues – Insulin as a first example’, Helv. Chim. Acta, 2018, 101,
e1700259.
[
[
[
[
26] G. N. Boross, S. Shimura, M. Besenius, N. Tennagels, K. Rossen, M. Wagner, J. W. Bode, ’Facile folding of insulin variants bearing a
prosthetic C-peptide prepared by α-ketoacid-hydroxylamine (KAHA) ligation’, Chem. Sci. 2018, DOI:10.1039/C8SC03738H
27] D. Setiawan, A. Kazaryan, M. A. Martoprawiro, M. Filatov, ’A first principles study of fluorescence quenching in rhodamine B dimers: how
can quenching occur in dimeric species?’, Chem. Chem. Phys., 2010, 12, 11238.
28] T. Karstens, K. Kobs, ’Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements’, J.
Phys. Chem. 1980, 84, 1871–1872.
29] S. Havelund, A. Plum, U. Ribel, I. Jonassen, A. Vølund, J. Markussen, P. Kurzhals, ’The mechanism of protraction of insulin detemir, a
long-acting, acylated analog of human insulin’, Pharm. Res. 2004, 21, 1498–1504.
30] D. Kenneth, H. S. W. Kim, ’Effects of PEG conjugation on insulin properties’, Advanced Drug Delivery Reviews, 2002, 54 505–530.
31] T. Hirose, ’Development of new basal insulin peglispro (LY2605541) ends in a disappointing result’, Diabetology International, 2016,
ꢀ
[
[
7
, 16–17.
[32] D. T. Birnbaum, M. A. Kilcomons, M. R. DeFelippis, J. M. Beals, ’Assembly and dissociation of human insulin and LysB28ProB29-insulin
hexameres: a comparison study’, Pharm. Res. 1997, 14, 25−36.
[33] N. T.Vinther, M. Norrmam, H. M. Strauss, K. Huus, M. Schlein, T. M. Pedersen, T. Kjeldsen, K. J. Jensen, F. Hubálek, ’Novel Covalently
Linked Insulin Dimer Engineered to Investigate the Function of Insulin Dimerization’, PLOS One,. 2012, 7, (2), e30882.
ꢁ
ꢀ
This article is protected by copyright. All rights reserved.