M. J. Rozema et al. / Tetrahedron Letters 47 (2006) 8765–8768
8767
4. Tong, Y.; Lin, N.-H.; Wang, L.; Hasvold, L.; Wang, W.;
Leonard, N.; Li, T.; Li, Q.; Cohen, J.; Gu, W.-Z.; Zhang,
H.; Stoll, V.; Bauch, J.; Marsh, K.; Rosenberg, S. H.;
Sham, H. L. Bioorg. Med. Chem. Lett. 2003, 13, 1571.
5. Anctil, E. J.-G.; Snieckus, V. J. Organomet. Chem. 2002,
653, 150, and the references cited therein.
CN
OMe
CN
N
N
N
N
OH
OH
OH
13, 81% ee
14, 89% ee
15, 0% ee
´
6. Kristensen, J.; Lysen, M.; Vedsø, P.; Begtrup, M. Org.
Figure 2.
Lett. 2001, 3, 1435; See also Caron, S.; Hawkins, J. M.
J. Org. Chem. 1998, 63, 2054; and Cailly, T.; Fabis, F.;
Bouillon, A.; Lemaˆıtre, S.; Sopkova, J.; de Santos, O.;
Rault, S. Synlett 2006, 53.
such as 4-cyanobenzaldehyde and p-anisaldehyde to
produce secondary alcohols 13 and 14, respectively.
Unfortunately, other Grignard reagents (PhMgBr) when
used under these conditions gave racemic product 15
(Fig. 2).
7. Krizan, T. D.; Martin, J. C. J. Am. Chem. Soc. 1983, 105,
6155.
8. Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999,
38, 2413.
9. For reviews see: (a) Soai, K.; Niwa, S. Chem. Rev. 1992,
92, 833; (b) Noyori, R.; Kitamura, M. Angew. Chem., Int.
Ed. Engl. 1991, 30, 49.
With the chiral alcohol in hand, the ether was
constructed (equation 2) by the alkylation of 9 with
benzylbromide 12 to afford the farnesyltransferase
inhibitor A-345665.0 (1).
10. For a review see: Bolm, C.; Hildebrand, J. P.; Muniz, K.;
˜
Hermanns, N. Angew. Chem., Int. Ed. 2001, 40, 3284.
11. (a) Choudhury, A.; Moore, J. R.; Pierce, M. E.; Fortunak,
J. M.; Valvis, I.; Confalone, P. N. Org. Process Res. Dev.
2003, 7, 324; (b) Thompson, A.; Corley, E. G.; Hunting-
ton, M. F.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36,
8937; (c) Pierce, M. E.; Parsons, R. L., Jr.; Radesca, L. A.;
Lo, Y. S.; Silverman, S.; Moore, J. R.; Islam, Q.;
Choudhury, A.; Fortunak, J. M. D.; Nguyen, D.; Luo,
C.; Morgan, S. J.; Davis, W. P.; Confalone, P. N.; Chen,
C.-Y.; Tillyer, R. D.; Frey, L.; Tan, L.; Xu, F.; Zhao, D.;
Thompson, A. S.; Corley, E. G.; Grabowski, E. J. J.;
Reamer, R.; Reider, P. J. J. Org. Chem. 1998, 63, 8536.
12. (a) Holden, K. G.; Mattson, M. N.; Cha, K. H.;
Rapoport, H. J. Org. Chem. 2002, 67, 5913; (b) Panosyan,
F. B.; Still, I. W. J. Can. J. Chem. 2001, 79, 1110; (c) Burm,
B. E. A.; Blokker, P.; Jongmans, E.; van Kampen, E.;
Wanner, M. J.; Koomen, G.-J. Heterocycles 2001, 55,
495.
13. (a) Yeh, M. C. P.; Knochel, P. Tetrahedron Lett. 1988, 29,
2395; (b) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert,
J. J. Org. Chem. 1988, 53, 2392.
14. (a) Cannizzaro, S. Annuals 1853, 88, 129; (b) Geissman, T.
A. Org. React. 1944, 2, 94; For a current synthetic example
see (c) Abaee, M. S.; Sharifi, R.; Mojtahedi, M. M. Org.
Lett. 2005, 7, 5893.
15. (a) Yoshioka, M.; Kawakita, T.; Ohno, M. Tetrahedron
Lett. 1989, 30, 1657; (b) Rozema, M. J.; AchyuthaRao, S.;
Knochel, P. J. Org. Chem. 1992, 57, 1956.
N
CN
N
N
i
ii, iii
CN
N
12
69%
O
50%
H
1
O
8
CN
Reagents and conditions: (i) see Ref. 18; (ii) aq NaOH, CH2Cl2; (iii)
LiHMDS, 4-cyanobenzyl bromide, Bu4NI (10 mol %), DMF, 0 ºC.
ð2Þ
In summary, we have developed a short and selective
synthesis of A-345665.0. It is highlighted by the forma-
tion of a chiral secondary alcohol through the enantio-
selective addition of a imidazolyl Grigand reagent to
an aldehyde using an external chiral auxiliary.
16. Chiral purity determined by chromatography on Chir-
alpak AD (hexane:ethanol).
Acknowledgments
17. We have seen similar complexes between the imidazolyl
moiety and zinc salts: Rozema, M. J.; Kruger, A. W.;
Rohde, B. D.; Shelat, B.; Bhagavatula, L.; Tien, J. T.;
Zhang, W.; Henry, R. F. Tetrahedron 2005, 61, 4419; See
also Comprehensive Coordination Chemistry; Wilkinson,
G., Ed.; Pergamon Press: Oxford, 1987; Vol. 5, p 925.
18. General procedure for 12: A solution of PhMgBr (1.0 M in
THF, 37.0 mL, 37.0 mmol) was added at ꢀ10 °C to a
We thank Mike Fitzgerald for the development of
the method for separation of enantiomers of the
A-345665.0 and Howard Morton for his helpful discus-
sions. We also thank Vincent Stoll for X-ray crystallo-
graphic analysis of A-345665.0 (1).
solution
of
5-iodo-1-methyl-1H-imidazole
(8.3 g,
References and notes
40.0 mmol) in CH2Cl2 (100 mL) and the resulting mixture
stirred at ꢀ10 °C for an additional 45 min. In a separate
reaction vessel, a solution of dimethylzinc (2 M in toluene,
20.0 mL, 40.0 mmol) was added to a solution of N,N0-
((1R,2R)-cyclohexane-1,2-diyl)bis(1,1,1-trifluoromethane-
sulfonamide) (11) (15.0 g, 39.7 mmol) in CH2Cl2 (50 mL)
at an ambient temperature. After an additional 45 min,
THF (50 mL) was added. The resulting solution of zinc
sulfonamide was added to the imidazolyl Grignard
reagent, and after stirring the resulting mixture at
ꢀ10 °C for 1 h, aldehyde 8 (5.2 g, 20.1 mmol) was added
1. Bos, J. L. In Molecular Genetics in Cancer Diagnosis;
Cossman, J., Ed.; Elsevier Scientific: USA, 1990; p 273.
2. Prendergast, G. C.; Rane, N. Exp. Opin. Invest. Drugs
2001, 10, 2105.
3. The absolute stereochemistry of A-345665.0 (1) was
established through an X-ray crystallographic structure
of 1 bound to the active site of farnesyl transferase,
Vincent Stoll, R46Y, AP10, Global Pharmaceutical R&D,
Abbott, 100 Abbott Park Road, Abbott Park, IL 60064-
6101, private communication.