Coelho et al.
isotropic 31P and 29Si chemical shifts (δiso) can be assigned
to the QN and Q′N species, where QN is related to the
Si(OX)N(OX′)4-N moieties (with X ) Si, P; X′ ) H, Et)
and Q′N stands for P(O)(OY)N(OY′)3-N entities (with Y )
P, Si ; Y′ ) H).1d Nevertheless, we have shown recently
that these notations are rather loose, in the sense that various
combinations of P-O-P/P-O-Si/P-OH‚‚‚ bonds can lead
to the same δiso value.3 In other words, sole knowledge of
the chemical shift values is not sufficient for the fine
structural description of silicophosphate derivatives.
niques,23 as well as spin diffusion experiments,23a,24 were
successfully used in the frame of inorganic phosphates.
The second category includes J-mediated experiments,
where J stands for the heteronuclear or homonuclear isotropic
scalar coupling. In the early 1990’s, such NMR sequences
were implemented by Fyfe and co-workers25 and Eckert and
co-workers.26 In the late 1990’s, Emsley and co-workers
showed that the INADEQUATE (incredible natural abun-
dance double quantum transfer experiment)27 and the HMQC
(heteronuclear multiple quantum coherence)28 sequences
could be safely transposed in solid-state NMR for the study
of organic and bio-organic derivatives. The homonuclear
INADEQUATE and UC2QF COSY (uniform-sign cross-
peak double quantum filtered correlation spectroscopy)
sequences have been subsequently used for the following
spin pairs: 31P/31P, 29Si/29Si, 15N/15N, and 13C/13C.23c-e,29-32
The heteronuclear HMQC sequence was adapted for the
Various solid-state NMR techniques can be implemented
for establishing the connectiVities between nuclei (i.e., 29Si
and 31P). The experiments used so far can be divided roughly
in two main categories.
The first category includes D-mediated experiments, where
D stands for the heteronuclear or homonuclear dipolar
interactions. Such experiments establish spatial connectiVities
between X and Y nuclei. In the case of the heteronuclear
dipolar interaction (X * Y), REDOR (rotational-echo double
resonance),15 TEDOR (transferred-echo double resonance),
TRAPDOR (transfer of polarization in double resonance),16
and CP MAS17-18 (cross polarization magic angle spinning)
pulse sequences are usually implemented. In some cases, the
distances between nuclei were accurately measured by the
careful analysis of the dipolar oscillations.19-20 For X ) 31P
and Y ) 29Si, very few results have been reported so far in
the literature. These results are related to silicon phosphide
(involving direct 31P-29Si bonds)21 and silicophosphate
phases involving 31P-O-29Si groups.2,22 Triple resonance
experiments 1H f 31P f 29Si were used for editing purposes
in silicophosphate gels.2 The crystalline Si5O(PO4)6 phase
was used as a standard for the setup of the 31P f 29Si 2D
HETCOR (heteronuclar correlation) CP MAS experiment.22
It has to be noted that because of the small 31P-29Si dipolar
couplings (∼360 Hz), very long contact times (up to 40 ms)
were used under the Hartmann-Hahn condition. Such
experimental conditions are very demanding in terms of
probe coil and RF power levels. In the case of the
homonuclear dipolar interaction (X ) Y), recoupling tech-
1
following spin pairs: H/13C, 1H/15N, 31P/27Al, 27Al/17O, 31P/
29Si, and 31P/71Ga.26,28,33-36 More involved J-derived solid-
state NMR techniques were proposed recently in the
literature, including triple quantum correlation experiments,37
2D and 3D H-HSQC (homonuclear-heteronuclear single
quantum correlation) experiments,38 and frequency-selective
(24) (a) Hartmann, P.; Jana, C.; Vogel, J.; Ja¨ger, C. Chem. Phys. Lett. 1996,
258, 107-112. (b) Clayden, N. J.; Esposito, S.; Aronne, A. J. Chem.
Soc., Dalton Trans. 2001, 2003-2008.
(25) (a) Fyfe, C. A.; Feng, Y.; Gies, H.; Grondey, H.; Kokotailo, G. T. J.
Am. Chem. Soc. 1990, 112, 3264-3270. (b) Fyfe, C. A.; Wong-Moon,
K. C.; Huang, Y.; Grondey, H. J. Am. Chem. Soc. 1995, 117, 10397-
10398. (c) Bechmann, M.; Helluy, X.; Marichal, C.; Sebald, A. Solid
State NMR 2002, 21, 71-85.
(26) Franke, D.; Hudalla, C.; Eckert, H. Solid State NMR 1992, 1, 33-40.
(27) (a) Lesage, A.; Auger, C.; Caldarelli, S.; Emsley, L. J. Am. Chem.
Soc. 1997, 119, 7867-7868. (b) Lesage, A.; Bardet, M.; Emsley, L.
J. Am. Chem. Soc. 1999, 121, 10987-10993. (c) Sakellariou, D.;
Brown, S. P.; Lesage, A.; Hediger, S.; Bardet, M.; Meriles, C.; Pines,
A.; Emsley, L. J. Am. Chem. Soc. 2003, 125, 4376-4380.
(28) (a) Lesage, A.; Sakellariou, D.; Steuernagel, S.; Emsley, L. J. Am.
Chem. Soc. 1998, 120, 13194-13201. (b) Lesage, A.; Charmont, P.;
Steuernagel, S.; Emsley, L. J. Am. Chem. Soc. 2000, 122, 9739-9744.
(29) Fayon, F.; Massiot, D.; Levitt, M. H.; Titman, J. J.; Gregory, D. H.;
Duma, L.; Emsley, L.; Brown, S. P. J. Chem. Phys. 2005, 122, 194313.
(30) (a) Hedin, N.; Graf, R.; Christiansen, S. C.; Gervais, C.; Hayward, R.
C.; Eckert, J.; Chmelka, B. F. J. Am. Chem. Soc. 2004, 126, 9425-
9432. (b) Brouwer, D. H.; Kristiansen, P. E.; Fyfe, C. A.; Levitt, M.
H. J. Am. Chem. Soc. 2005, 127, 542-543.
(31) (a) Brown, S. P.; Pe´rez-Torralba, M.; Sanz, D.; Claramunt, R. M.;
Emsley, L. J. Am. Chem. Soc. 2002, 124, 1152-1153.(b) Brown, S.
P.; Pe´rez-Torralba, M.; Sanz, D.; Claramunt, R. M.; Emsley, L. Chem.
Commun. 2002, 17, 1852-1853.
(32) (a) Grasso, G.; De Swiet, T. M.; Titman, J. J. J. Phys. Chem. B 2002,
106, 8676-8680. (b) Olsen, R. A.; Struppe, J.; Elliott, D. W.; Thomas,
R. J.; Mueller, L. J. J. Am. Chem. Soc. 2003, 125, 11784-11785. (c)
De Pae¨pe, G.; Lesage, A.; Steuernagel, S.; Emsley, L. Chem. Phys.
Chem. 2004, 5, 869-875. (d) Cadars, S.; Lesage, A.; Emsley, L. J.
Am. Chem. Soc. 2005, 127, 4466-4476. (e) Harris, R. K.; Joyce, S.
A.; Pickard, C. J.; Emsley, L. Phys. Chem. Chem. Phys. 2006, 8, 137-
143.
(15) Gullion, T.; Schaefer, J. J. Magn. Reson. 1989, 81, 196-200.
(16) (a) Hing, A. W.; Vega, S.; Schaefer, J. J. Magn. Reson. 1992, 96,
205-209. (b) Grey, C. P.; Vega, A. J. J. Am. Chem. Soc. 1995, 117,
8232-8242.
(17) Hartmann, S. R.; Hahn, E. L. Phys. ReV. 1962, 128, 2042-2053.
(18) Pines, A.; Gibby, G.; Waugh, J. S. J. Chem. Phys. 1973, 59, 569-
590.
(19) Aza¨ıs, T.; Bonhomme, C.; Bonhomme-Coury, L.; Vaissermann, J.;
Millot, Y.; Man, P. P.; Bertani, P.; Hirschinger, J.; Livage, J. J. Chem.
Soc., Dalton Trans. 2002, 609-618.
(20) Aza¨ıs, T.; Bonhomme-Coury, L.; Vaissermann, J.; Bertani, P.;
Hirschinger, J.; Maquet, J.; Bonhomme, C. Inorg. Chem. 2002, 41,
981-988.
(21) Franke, D.; Hudalla, R.; Maxwell, R.; Eckert, H. J. Phys. Chem. 1992,
96, 7506-7509.
(33) Massiot, D.; Fayon, F.; Alonso, B.; Trebosc, J.; Amoureux, J. P. J.
Magn. Reson. 2003, 164, 160-164.
(34) Iuga, D.; Morais, C.; Gan, Z.; Neuville, D. R.; Cormier, L.; Massiot,
D. J. Am. Chem. Soc. 2005, 127, 11540-11541.
(35) Coelho, C.; Aza¨ıs, T.; Bonhomme-Coury, L.; Maquet, J.; Massiot,
D.; Bonhomme, C. J. Magn. Reson. 2006, 179, 114-119.
(36) Montouillout, V.; Morais, C. M.; Douy, A.; Fayon, F.; Massiot, D.
Magn. Reson. Chem. 2006, 44, 770-775.
(37) Fayon, F.; Roiland, C.; Emsley, L.; Massiot, D. J. Magn. Reson. 2006,
179, 49-57.
(38) (a) Deschamps, M.; Fayon, F.; Montouillout, V.; Massiot, D. Chem.
Commun. 2006, 1924-1925. (b) Deschamps, M.; Massiot, D. J. Magn.
Reson. 2006, published online.
(22) Lejeune, C.; Coelho, C.; Bonhomme-Coury, L.; Aza¨ıs, T.; Maquet,
J.; Bonhomme, C. Solid State NMR 2005, 27, 242-246.
(23) (a) King, I. J.; Fayon, F.; Massiot, D.; Harris, R. K.; Evans, J. S. O.
Chem. Commun. 2001, 1766-1767. (b) Fayon, F.; Massiot, D.;
Suzuya, K.; Price, D. L. J. Non-Cryst. Solids 2001, 283, 88-94. (c)
Fayon, F.; Le Saout, G.; Emsley, L.; Massiot, D. Chem. Commun.
2002, 1702-1703. (d) Fayon, F.; King, I. J.; Harris, R. K.; Gover, R.
K. B.; Evans, J. S. O.; Massiot, D. Chem. Mater. 2003, 15, 2234-
2239. (e) Fayon, F.; King, I. J.; Harris, R. K.; Evans, J. S. O.; Massiot,
D. C. R. Chim. 2004, 7, 351-361. (f) Feike, M.; Ja¨ger, C.; Spiess, H.
W. J. Non-Cryst. Solids 1998, 223, 200-206.
1380 Inorganic Chemistry, Vol. 46, No. 4, 2007