Angewandte Chemie International Edition
10.1002/anie.201907001
COMMUNICATION
antimonates (see SI).[34,35] Thus, in the absence of nucleophile in
[1]
C. S. Bennett, M. C. Galan, Chem. Rev. 2018, 118, 7931.
[2]
a) A. Kirschning, A. F. W. Bechthold, J. Rohr, Top. Curr. Chem. 1997, 188, 1;
b) R. M. de Lederkremer, C. Marino, Adv. Carbohydr. Chem. Biochem. 2007, 61,
143; c) P. T. Daniel, U. Koert, J. Schuppan, Angew. Chem. Int. Ed. 2006, 45, 872;
Angew. Chem. 2006, 118, 886.
a) For a recent exemple: G. Zhao, T. Wang, Angew. Chem. Int. Ed. 2018, 57,
6120; Angew. Chem. 2018, 130, 6228. b) For the evidence of erosion of
stereochemical control in O-glycosylation with 2-deoxyglycosyl donors: M. G.
Beaver, K. A. Woerpel, J. Org. Chem. 2010, 75, 1107.
a) S. G. Withers, D. J. MacLennan, I. P. Street, Carbohydr. Res. 1986, 154, 127;
b) M. N. Namchuk, J. D. Carter, A. Becalski, T. Andrews, S. G. Withers, J. Am.
Chem. Soc. 2000, 122, 1270.
A. Hoffmann-Röder, A. Kaiser, S. Wagner, N. Gaidzik, D. Kowalczyk, U.
Westerlind, B. Gerlitzki, E. Schmitt, H. Kunz, Angew. Chem. Int. Ed. 2010, 49,
the reaction medium, this superelectrophilic glucosyl cation can
-
be trapped by “non-coordinating” Sb
n
F
5n+1 species.[36] The
transient formation of the 2-deoxy-2-fluoro-glucosyl cation 16 in
HF/SbF was confirmed by performing a kinetic ionic deuteration
[3]
5
that furnished the axially deuterated pyranose 17 as the major
product (Fig. 6a). To further confirm this trend, the peracetylated
[4]
[5]
[6]
2
-fluoromannosyl fluoride 18 was examined. Similarly,
a
mannosyl coordinated species 19 adopting a 4C
conformation
1
and displaying a broad NMR signal for the anomeric carbon was
observed (see SI). Treatment of the reaction mixture with
cyclohexane-d12 led to the isolation of an axially deuterated
monosaccharide 21 in agreement with the formation of a transient
8
498.
a) S. Maschauer, J. Einsiedel, R. Haubner, C. Hocke, M. Ocker, H. Hübner, T.
Kuwert, P. Gmeiner, O. Prante, Angew. Chem. Int. Ed. 2010, 49, 976; b) X. -G.
Li, S. Dall'Angelo, Schweiger, L. F. M. Zanda, D. O'Hagan, Chem. Commun.
2
012, 48, 5247;
2-fluoromannosyl cation 20 in the superacid medium (Fig 6c). The
[7]
a) C. Bucher, R. Gilmour, Angew. Chem. Int. Ed. 2010, 49, 8724; b) E. Durantie,
C. Bucher, R. Gilmour, Chem. Eur. J. 2012, 18, 8208; c) N. Santschi, R. Gilmour,
Eur. J. Org. Chem. 2015, 32, 6983-6987; d) N. Aiguabella, M. C. Holland, R.
Gilmour, Org. Biomol. Chem. 2016, 14, 5534-5538; e) A. Sadurni, G. Kehr, M.
Ahlqvist, J. Wernevik, H. Peilot Sjögren, C. Kankkonen, L. Knerr, R. Gilmour,
Chem. Eur. J. 2018, 24, 2832-2836; f) T. Hayashi, G. Kehr, K. Bergander, R.
Gilmour, Angew. Chem. 2019, 131, 3854-3858; Angew. Chem. Int. Ed. 2019, 58,
preferred deuteration of both glycosyl cations 16 and 20 from the
face must arise from their specific conformation and counter ion
distribution in their coordinating sphere.[37]
In conclusion, this study demonstrates that the union of
superacids and NMR analysis provides an expansive platform to
explore glycosyl cations in the condensed phase. The initial
generation of D-gluco-configured glycosyl cations in
superacid,[18a] has been significantly extended to include other
natural and non-natural sugars that are biologically relevant. For
the first time, galactose and mannose-derived systems could be
interrogated. Working in superacid also allowed for the analysis
of 2-deoxy systems, as well as unnatural analogues bearing
halogens at C-2. A combined experimental and computational
approach has demonstrated the profound effect that halogens
can have on conformation: a seemingly subtle switch from C2-F
to C2-Br causes very different conformational behavior. Whilst
analysis of the 2-bromo derivatives indicate a through space
intramolecular stabilisation of the glycosyl cation whatever the
stereochemistry, investigation of the 2-fluoro glycosyl donors
suggests that intermolecular stabilization of the transient glycosyl
cation by poorly nucleophilic fluoroantimonate species is
operational. It is evident that for these fluorinated species, even
in a “non-nucleophilic” environment, counter ion matters. This
result may pave the way for glycosylation reactions with
unprecedented weak nucleophiles.
3
814-3818.
[8]
a) P. O. Adero, H. Amarasekara, P. Wen, L. Bohé, D. Crich, Chem. Rev. 2018,
1
18, 8242; c) L. K. Mydock, A. V. Demchenko, Org. Biomol. Chem. 2010, 8,
4
97.
[9]
a) J. R. keffe, R. A. More O'Ferrall, Arkivoc 2008, 183; b) G. A. Olah, J. M.
Bollinger, J. Am. Chem. Soc. 1967, 89, 2993.
[10] a) X. Huang, C. Surry, T. Hiebert, A. J. Bennet, J. Am. Chem. Soc. 1995, 117,
0614; b) T. L. Amyes, W. P. Jencks, J. Am. Chem. Soc. 1989, 111, 7888; c) J.
1
Zhu, A. J. Bennet, J. Am. Chem. Soc. 1998, 120, 3887.
[
11] Relative to ground states, the transition states leading to the allylic and
oxocarbenium ions have been recently suggested to be nearly identical, see: P.
M. Danby, S. G. Withers, J. Am. Chem. Soc. 2017, 139, 10629.
[12] C. Denekamp, Y. Sandlers, J. Mass Spectrom. 2005, 40, 1055.
[
13] a) H. Elferink, M. E. Severijnen, J. Martens, R. A. Mensink, G. Berden, J.
Oomens, F. P. J. T. Rutjes, A. M. Rijs, T. J. Boltje, J. Am. Chem. Soc. 2018, 140,
6034; b) E. Mucha, M. Marianski, F. -F. Xu, D. A. Thomas, G. Meijer, G. von
Helden, P. H. Seeberger, K. Pagel, Nat. Commun. 2018, 9, 4174.
[14] D. M. Whitfield, in Advances in Carbohydrate Chemistry and Biochemistry,
Academic Press, 2009, pp. 83–159.
[15] M. Huang, G. E. Garrett, N. Birlirakis, L. Bohé, D. A. Pratt, D. Crich, Nat. Chem.
012, 4, 663.
2
[
[
[
16] K. Saito, K. Ueoka, K. Matsumoto, S. Suga, T. Nokami, J. Yoshida, Angew.
Chem. Int. Ed. 2011, 50, 5153.
17] G. A. Olah, G. K. S. Prakash, A. Molnar, J. Sommer, Superacids, 2nd edn, Wiley
Intersciences, New York, 2009.
18] a) A. Martin, A. Arda, J. Désiré, A. Martin-Mingot, N. Probst, P. Sinaÿ, J.
Jiménez-Barbero, S. Thibaudeau, Y. Blériot, Nat. Chem. 2016, 8, 186. b) T.
Hansen, L. Lebedel, W. A. Remmerswaal, S. van der Vorm, D. P. A. Wander, M.
Somers, H. S. Overkleeft, D. V. Filippov, J. Désiré, A. Mingot, Y. Blériot, G. A.
van der Marel, S. Thibaudeau, J. Codee, ACS Cent. Sci. 2019, 5, 781.
19] M. Miljkovic, D. Yeagley, P. Deslonghamps, Y. L. Dory, J. Org. Chem. 1997,
[
6
2, 7597.
Acknowledgements
[
[
[
20] M. Bols, X. Liang, H. H. Jensen, J. Org. Chem. 2002, 67, 8970.
21] D. Crich, Acc. Chem. Res. 2010, 43, 1144.
22] K. Igarashi, T. Honma, J. Irisawa, Carbohydr. Res. 1970, 15, 329.
[23] M. Teichmann, G. Descotes, D. Lafont, Synthesis 1993, 889.
24] a) D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308; b) L. E. Zimmer, C. Sparr, R.
Gilmour, Angew. Chem. Int. Ed. 2011, 50, 11860; Angew. Chem. 2011, 123,
12062.
25] A. Tressaud, "Progress in Fluorine Science" series, Elsevier, Paris, 2017.
26] a) I. N’Go, S. Golten, A. Ardá, J. Cañada, J. Jiménez‐Barbero, B. Linclau, S. P.
Vincent, Chem. A Eur. J. 2014, 20, 106; b) B. Xu, L. Unione, J. Sardinha, S. Wu,
LL and AM thank the Agence Nationale de la Recherche (ANRs
SweetCat and Oxycarb) for PhD grants. ST and YB acknowledge
the European Union (ERDF), Région Nouvelle Aquitaine and the
University of Poitiers for financial support. RG and JJB
acknowledge the European Research Council for generous
support (ERC-2013-StG Starting Grant to RG - Project number
[
[
[
3
7
36376-ChMiFluorS and ERC-2017-AdG to JJB - Project number
88143-RECGLYCANMR). AA and JJB thank Agencia Estatal de
2
014, 53, 9597; c) G. T. Giuffredi, V. Gouverneur, B. Bernet, Angew. Chem. Int.
Ed. 2013, 52, 10524; d) D. Crich, O. Vinogradova, J. Am. Chem. Soc. 2007, 129,
1756; e) T. J. Kieser, N. Santschi, L. Nowack, G. Kehr, T. Kuhlmann, S.
Investigación (Spain) for grants CTQ2015-64597-C2-1-P and
Severo Ochoa Excellence Accreditation SEV‐2016‐0644. We
thank Dr. Gonzalo Jiménez-Osés and Dr. Tammo Diercks (CIC
1
Albrecht, R. Gilmour, ACS Chem. Neurosci. 2018, 9, 1159.
[
27] a) G. A. Olah, A. Burrichter, G. Rasul, A. K. Yudin, G. K. S. Prakash, J. Org.
Chem. 1996, 61, 1934; b) G. A. Olah, S. Yu, G. Liang, G. D. Matseescu, M. R.
Bruce, D. J. Donovan, M. Arvanaghi, J. Org. Chem. 1981, 46, 571.
28] a) R. Kalescky, W. Zou, E. Kraka, D. Cremer, J. Phys. Chem. A 2014, 118, 1948;
b) G. A. Olah, G. K. S. Prakash, G. Rasul, Proc Natl Acad Sci U S A 2013, 110,
bioGUNE) for insightful discussions on the calculations for the
-
SbF
6
species and on the scalar relaxation effects, respectively.
[
8
427; c) C. R. Pitts, M. G. Holl, T. Lectka, Angew. Chem. Int. Ed. 2018, 57, 1924;
Angew. Chem. 2018, 130, 1942.
[29] G. A. Olah, C. U. Pittman, Jr., J. Am. Chem. Soc. 1966, 88, 3310.
Keywords: glycosylation
superelectrophile • reaction mechanisms
•
oxocarbenium
•
fluorine
•
This article is protected by copyright. All rights reserved.