Angewandte Chemie International Edition
10.1002/anie.201907329
COMMUNICATION
interactions involved in the solid-state superstructure are not
characterized by interactions between π-electron rich and π-
electron poor units, but rather established by offset π–π
interactions between DMP units, d(CH•••O) interactions and van
der Waals interactions involving the methoxyl groups of the
[4]
a) W. A. Freeman, W. L. Mock, N. Y. Shih, J. Am. Chem. Soc. 1981,
103, 7367‒7368; b) J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L.
Isaacs, Angew. Che, Int. Ed. 2005, 44, 4844−4870; c)X.-L. Ni, X. Xiao,
H. Cong, L.-L. Liang, K. Cheng, X.-J. Cheng, N.-N. Ji, Q.-J. Zhu, S.-F.
Xue, Z. Tao, Chem. Soc. Rev. 2013, 42, 9480‒9508.
[
[
5]
6]
a) V. Sidorov, F. W. Koch, M. El-Kouedi, J. T. Davis, J. Chem. Soc.,
Chem. Commun. 2000, 2369‒2370; b) S. Kennedy, G. Karotsis, C. M.
Beavers, S. J. Teat, E. K. Brechin, S. J. Dalgarno, Angew. Chem. Int.
Ed. 2010, 49, 4205‒4208.; c) S. Kennedy, C. M. Beavers, S. J. Teat, S.
J. Dalgarno, New. J. Chem. 2011, 35, 28‒31.
pillars. The radical form, MCTPQT•3PF
and obtained as high-quality single crystals for X-ray crystal
super)structural analysis. Notably, a quadruple stack composed
6
, has been synthesized
(
of a radical cationic pimer, sandwiched between two DMP units,
demonstrates the disruptive impact of the electron-rich pillars on
the radical cation recognition motif. In particular, the marginal
overlap between the radical cationic bipyridinium units by only
two α-carbons and two β-carbons is unprecedented and may
provide new insights into the manipulation and control of the
self-assembly behavior of viologen radical cations. We envision
cyclotris(paraquat-p-phenylene) and its derivatives as a fruitful
entry point into the fabrication of advanced mechanically
interlocked molecules and supermolecules with intricate three-
dimensional features.[21] Their redox properties also provide
access to their corresponding radical forms which open the
doors to further possibilities including spintronics applications.[22]
a) T. Ogoshi, S. Kanai, S. Fujinami, T.-A. Yamagishi, Y. Nakamoto, J.
Am. Chem. Soc. 2008, 130, 5022‒5023; b) M. Xue, Y. Yang, X. Chi, Z.
Zhang, F. Huang, Acc. Chem. Res. 2012, 45, 1294‒1308; c) P. J.
Cragg, K. Sharma, Chem. Soc. Rev. 2012, 41, 597‒607; d) N. L. Strutt,
H. Zhang, S. T. Schneebeli, J. F. Stoddart, Chem. Eur. J. 2014, 20,
10996‒11004.
[
7]
S.T. Schneebeli, C. Cheng, K. J. Hartlieb, N. L. Strutt, A. A. Sarjeant, C.
L. Stern, J. F. Stoddart, Chem. Eur. J. 2013, 19, 3860‒3868.
[8]
a) V. Semetey, C. Diderjean, J.-P. Briand, A. Aubry, G. Guichard,
Angew. Chem. Int. Ed. 2002, 41, 1895‒1898; b) R. Gleiter, D. B. Werz,
B. J. Rausch, Chem. Eur. J. 2003, 9, 2676−2683; c) L. S. Shimizu, A. D.
Hughes, M. D. Smith, S. A. Samuel, D. Ciurtin-Smith, Supramol. Chem.
2005, 17, 27-30; d) S. Dawm, M. B. Dewal, D. Sobransingh, M. C.
Paderes, A. C. Wibowo, M. D. Smith, J. A. Krause, P. J. Pellechia, L. S.
Shimizu, J. Am. Chem. Soc. 2011, 133, 7025−7032.
[
9]
a) P. L. Anelli, M. Asakawa, P. R. Ashton, G. R. Brown, W. Hayes, O.
Kocian, S. R. Pastor, J. F. Stoddart, M. S. Tolley, A. J. P. White, D. J.
Williams, J. Chem. Soc., Chem. Commun. 1995, 24, 2541‒2545; b) M.
Frasconi, I. R. Fernando, Y. Wu, Z. Liu, W.-G. Liu, S. M. Dyar, G. Barin,
M. R. Wasielewski, W. A. Goddard, J. F. Stoddart, J. Am. Chem. Soc.
Acknowledgements
This research is part of the Joint Center of Excellence in
Integrated Nano-Systems (JCIN) at King Abdulaziz City for
Science and Technology (KACST) and Northwestern University
2
015, 137, 11057‒11068; c) M. T. Nguyen, M. D. Krzyaniak, M.
Owczarek, D. P. Ferris, M. R. Wasielewski, J. F. Stoddart, Angew.
Chem. Int. Ed. 2017, 56, 5795‒5800.
(
NU). The authors thank both KACST and NU for their continued
[
[
10] B. Odell, M. V. Reddington, A. M. Z. Slawin, N. Spencer, J. F. Stoddart,
Angew. Chem. Int. Ed. Engl. 1988, 27, 1547‒1550.
support of this research. The contribution of the Integrated
Molecular Structure Education and Research Center (IMSERC)
at Northwestern University is also acknowledged gratefully.
O.K.F and L.R.R. are grateful for the financial support from the
U.S. Department of Energy (DOE) Office of Science, Basic
Energy Sciences Program (grant DE-FG02-08ER155967).
11] a) P. R. Ashton, C. G. Claessens, W. Hayes, J. F. Stoddart, S. Menzer,
A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed. 1995, 34,
1862‒1865; b) P. R. Ashton, A. Chemin, C. G. Claessens, S. Menzer, J.
F. Stoddart, A. J. P. White, D. J. Williams, Eur. J. Org. Chem. 1998, 6,
969‒981.
[
12] a) P. R. Ashton, R. Ballardini, V. Balzani, M. T. Gandolfi, D. J.-F.
Marquis, L. Pérez-Garcia, L. Prodi, J. F. Stoddart, M. Venturi, J. Chem.
Soc., Chem. Commun. 1994, 2, 177‒180; b) P. Ashton, D. Philp, N.
Spencer, J. F. Stoddart, D. J. Williams, J. Chem. Soc., Chem. Commun.
Keywords: macrocycles • nanoporous material • radical-radical
interactions
• solid-state structures • supramolecular self-
assembly
1994, 0, 181‒184; c) G. Gil-Ramírez, D. A. Leigh, A. J. Stephens,
Angew. Chem. Int. Ed. 2015, 54, 6110−6150; d) J. F. Stoddart, Angew.
Chem. Int. Ed. 2017, 56, 11094‒11125.
[1]
a) J.-M. Lehn, Angew. Chem. Int. Ed. 1998, 27, 89‒112; Proc. Natl.
Acad. Sci. U. S. A. 2002, 99, 4763−4768; Science 2002, 295,
[13] a) Bockman, T. M.; Kochi, J. K., J.Org. Chem. 1990, 55, 4127‒4135; b)
M. R. Geraskina, A. S. Dutton, M. J. Juetten, S. A. Wood, A. H. Winter,
Angew. Chem. Int. Ed. 2017, 56, 9435−9439.
2400−2403; Rep. Prog. Phys. 2004, 67, 249−265; b) T. Bong, T. D.
Clark, J. R. Granja, M. R. Ghadiri, Angew. Chem. Int. Ed. 2001, 40,
9
88‒1011; c) G. R. Desiraju, Angew. Chem. Int. Ed. 2003, 34,
311‒2327; d) J. K. Klosterman, Y. Yamauchi, M. Fujita, Chem. Soc.
[14] a) A. Trabolsi, N. Khashab, A. C. Fahrenbach, D. C. Friedman, M. T.
Colvin, K. K. Cotí, D. Benítez, E. Tkatchouk, J.-C. Olsen, M. E.
Belowich, R. Carmielli, H. A. Khatib, W. A. Goddart III, M. R.
Wasielewski, J. F. Stoddart, Nat. Chem. 2010, 2, 42−49; b) H. Li, A. C.
Fahrenbach, S. K. Dey, S. Basu, A. Trabolsi, Z. Zhu, Y. Y. Botros, J. F.
Stoddart, Angew. Chem. Int. Ed. 2010, 49, 8260‒8265; c) A. C.
Fahrenbach, J. C. Barnes, D. A. Lanfranchi, H. Li, A. Coskun, J. J.
Gassensmith, Z. Liu, D. Benítez, A. Trabolsi, W. A. Goddard, M.
Elhabiri, J. F. Stoddart, J. Am. Chem. Soc. 2012, 134, 3061−3072; d) M.
Frasconi, I. R. Fernando, Y. Wu, Z. Liu, W.-G. Liu, S. M. Dyar, G. Barin,
M. R. Wasielewski, W. A. Goddard III, J. F. Stoddart, J. Am. Chem. Soc.
2015, 137, 11057−11068.
2
Rev. 2009, 38, 1714‒1725; e) Z. Liu, S. K. M. Nalluri, J. F. Stoddart,
Chem. Soc. Rev. 2017, 46, 2459‒2478.
[
[
2]
3]
a) P. R. Ashton, C. L. Brown, S. Menzer, S. A. Nepogodiev, J. F.
Stoddart, D. J. Williams, Chem. Eur. J. 1996, 2, 580‒591; b) P. R.
Ashton, S. J. Cantrill, G. Gattuso, S. Menzer, S. A. Nepogodiev, A. N.
Shipway, J. F. Stoddart, D. J. Williams, Chem. Eur. J. 1997, 3,
1299−1314; c) G. Gattuso, S. Menzer, S. A. Nepogodiev, J. F. Stoddart,
D. J. Williams, Angew. Chem. Int. Ed. 1997, 36, 1451‒1454; d) B.
König, Angew. Chem. Int. Ed. 1997, 36, 1833−1835.
a) C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 7017−7036; b) M.
Barboiu, G. Vaughan, A. v. d. Lee, Org. Lett. 2003, 5, 3073−3076; c) A.
Cazacu, C. Tong, A. v. d. Lee, T. M. Fyles, M. Barboiu, J. Am. Chem.
Soc. 2006, 128, 9541−9548.
[15] E. J. Dale, N. A. Vermeulen, M. Juríček, J. C. Barnes, R. M. Young, M.
R. Wasielewski, J. F. Stoddart Acc. Chem. Res. 2016, 49, 262−273.
[16] Srinivasan, K.; Rajakumar, P. Supramol. Chem. 2005, 17, 215‒219.
This article is protected by copyright. All rights reserved.