Page 5 of 6
Journal of the American Chemical Society
Anthraquinones. Tetrahedron 1990, 46, 291–318. (c) Thomas, G. J.
(g) Liu, W.; Ackermann, L. Ortho- and Para-Selective Ruthenium-
Catalyzed C(sp2)–H Oxygenations of Phenol Derivatives. Org. Lett.
2013, 15, 3484–3486. (h) Yang, F.; Rauch, K.; Kettelhoit, K.;
Ackermann, L. Aldehyde-Assisted Ruthenium(II)-Catalyzed C–H
Oxygenations. Angew. Chem., Int. Ed. 2014, 53, 11285–11288.
Synthesis of Anthracyclines Related to Daunomycin. In Recent
Progress in the Chemical Synthesis of Antibiotics; Lukacs, G.; Ohno,
M.; Eds.; Springer-Verlag; 1990, 467–496. (d) Wheeler, D. M. S.;
Wheeler, M. M. Stereoselective Syntheses of Doxorubicin and Related
Compounds. In Studies in Natural Products Chemistry; Rahman, A.
Ed.; Elsevier:ꢀ Amsterdam, 1994; Vol. 14, 3−46. (e) Achmatowicz, O.;
Szechner, B.; Synthesis of Enantiomerically Pure Anthracyclinones.
Top. Curr. Chem. 2007, 282, 143–186.
1
2
3
4
5
6
7
8
9
17. Control experiments confirmed the requirement of a specific Ru-
catalysis for this transformation, as well as excess of PIFA for further
oxidation. See Supplementary Information.
18. For selected examples, see: (a) Southgate, E. H.; Pospech, J.; Fu, J.;
Holycross, D. R.; Sarlah, D. Dearomative Dihydroxylation with
Arenophiles. Nat. Chem. 2016, 8, 922–928. (b) Okumura, M.;
Nakamata Huynh, S. M.; Pospech, J.; Sarlah, D. Arenophile-mediated
Dearomative Reduction. Angew. Chem., Int. Ed. 2016, 55, 15910–
15914. (c) Okumura, M.; Shved, A. S.; Sarlah, D. Palladium-Catalyzed
Dearomative syn-1,4-Carboamination. J. Am. Chem. Soc. 2017, 139,
17787–17790. (d) Hernandez, L. W.; Klöckner, U.; Pospech, J.; Hauss,
11. For selected examples, see: (a) Ref. 8r. (b) Wong, C. M.; Popien, D.;
Schenk, R.; Te Raa, Synthetic Studies of Hydronaphthacenic
Antibiotics. I. The Synthesis of 4-Demethoxy-7-O-methyl
Daunomycinone. J. Can. J. Chem. 1971, 49, 2712–2718. (c) Ishizumi,
K.; Ohashi, N.; Tanno, N. Stereospecific Total Synthesis of 9-
Aminoanthracyclines: (+)-9-Amino-9-deoxydaunomycin and Related
Compounds J. Org. Chem. 1987, 52, 4477–4485. (d) Ref. 8b (e)
Hauser, F. M.; Prasanna, S. Total Syntheses of (±)-Duanomycinone.
Regiospecific Preparations of (±)-7,9-Dideoxydaunomycinone and
6,11-Dihydroxy-4-methoxy-7,8,9,10-tetrahydronaphthacene-5,9,12-
trione. J. Am. Chem. Soc. 1981, 103, 6378–6386.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
L.;
Sarlah,
D.
Nickel-Catalyzed
Dearomative
trans-1,2-
Carboamination. J. Am. Chem. Soc. 2018, 140, 4503–4507. (e) Wertjes,
W. C.; Okumura, M.; Sarlah, D. Palladium-Catalyzed Dearomative syn-
1,4-Carboamination. J. Am. Chem. Soc. 2019, 141, 163−167.
12. For selected examples, see: (a) Kelly, T. R.; Ananthasubramanian, L.;
Borah, K.; Gillard, J. W.; Goerner, R. N.; King, P. F.; Lyding, J. M.;
Tsang, W.-C.; Vaya, J. An Efficient, Regiospecific Synthesis of (±)-
Daunomycinone. Tetrahedron 1984, 40, 4569–4577. (b) Ref. 8s.(c)
Krohn, K.; Tolkiehn, K. Synthetische Anthracyclinone, XIV. Synthese
neuer Derivate des Daunomycinons und des β‐Rhodomycinons. Chem.
Ber. 1980, 113, 2976–2993. (d) Dienes, Z.; Antonsson, T.; Vogel, P.
Enantioselective Synthesis of (R)-(−)-2-Acetyl-2,5,12-trihydro-1,2,3,4-
tetrahydro-6,11-naphthacenequinone via Diastereoselective Diels-Alder
Cycloaddition. Tetrahedron Lett. 1993, 34, 1013−1016.
13. (a) Geraskin, I. M.; Pavlova, O.; Neu, H. M.; Yusubov, M. S.;
Nemykin, V. N.; Zhdankin, V. V. Comparative Reactivity of
Hypervalent Iodine Oxidants in Metalloporphyrin-Catalyzed
Oxygenation of Hydrocarbons: Iodosylbenzene Sulfate and 2-
Iodylbenzoic Acid Ester as Safe and Convenient Alternatives to
Iodosylbenzene Adv. Synth. Catal. 2009, 351, 733–737. (b) Yusubov,
M. S.; Nemykin, V. N.; Zhdankin, V. V. Transition Metal-Mediated
Oxidations Utilizing Monomeric Iodosyl- and Iodylarene Species
Tetrahedron 2010, 66, 5745–5752.
14. For selected comprehensive reviews on direct oxidation of arenes, see:
(a) Dudfield, P. J. Synthesis of Quinones. In Comprehensive Organic
Synthesis; Ley, S. V., Ed.; Pergamon Press:ꢀ Oxford, 1991; Vol. 7, 345–
356. (b) Naruta, Y.; Maruyama, K. Recent Advances in the Synthesis of
Quinonoid Compounds. In The Chemistry of Quinonoid Compounds;
Patai, S., Rappoport, Z., Ed.; John Wiley:ꢀ New York, 1988; Vol. 2, pp
241–402.
15. For selected reviews on this topic, see: (a) Gensch, T.; Hopkinson, M.
N.; Glorius, F.; Wencel-Delord, J. Mild Metal-Catalyzed C–H
Activation: Examples and Concepts. Chem. Soc. Rev. 2016, 45, 2900–
2936. (b) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G.
Transition Metal-Catalyzed Ketone-Directed or Mediated C–H
Functionalization. Chem. Soc. Rev. 2015, 44, 7764–7786. (c) De
Sarkar, S.; Liu, W.; Kozhushkov, S.; Ackermann, L. Weakly
Coordinating Directing Groups for Ruthenium(II)-Catalyzed C–H
Activation. Adv. Synth. Catal. 2014, 356, 1461–1479.
(d) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak Coordination
19. (a) Hamrock, S. J.; Sheridan, R. S. Para photoaddition of N-
methyltriazolinedione to benzene. Synthesis of Energy-Rich Azo
Compounds Comprising Benzene + Nitrogen. J. Am. Chem. Soc. 1989,
111, 9247. (b) Kjell, D. P.; Sheridan, R. S. Photochemical
Cycloaddition of N-methyltriazolinedione to Naphthalene. J. Am.
Chem. Soc. 1984, 106, 5368. (c) Kjell, D. P.; Sheridan, R. S. A
Photochemical Diels–Alder Reaction of N-methyltriazolinedione. J.
Photochem. 1985, 28, 205–214. (d) Hamrock, S. J.; Sheridan, R. S.
Photochemical Diels–Alder Addition of N-methyltriazolinedione to
Phenanthrene. Tetrahedron Lett. 1988, 29, 5509–5512.
20. (a) Männig, D.; Nöth, H. Catalytic Hydroboration with Rhodium
Complexes. Angew. Chem., Int. Ed. Engl. 1985, 24, 878–879. (b)
Evans, D. A.; Fu, G. C.; Hoveyda, A. H. Rhodium(I)-Catalyzed
Hydroboration of Olefins. The Documentation of Regio- and
Stereochemical Control in Cyclic and Acyclic Systems. J. Am. Chem.
Soc. 1988, 110, 6917–6918. (c) Evans, D. A.; Fu, G. C.; Hoveyda, A.
H. Rhodium(I)- and Iridium(I)-Catalyzed Hydroboration Reactions:
Scope and Synthetic Applications. J. Am. Chem. Soc. 1992, 114, 6671–
6679.
21. For an insightful perspective on stability of borates, see: Hall, D. G.
Structure, Properties, and Preparation of Boronic Acid Derivatives.
Boronic Acids; Wiley-VCH Verlag GmbH & Co. KGaA: 2011; pp 1–
133.
22. For recent reviews on the C(sp2)–C(sp3) bond formation, see: (a)
Chemler, S. R.; Trauner, D.; Danishefsky, S. J. The B‐Alkyl Suzuki–
Miyaura Cross‐Coupling Reaction: Development, Mechanistic Study,
and Applications in Natural Product Synthesis. Angew. Chem., Int. Ed.
2001, 40, 4544– 4568. (b) Jana, R.; Pathak, T. P.; Sigman, M. S.
Advances in Transition Metal (Pd, Ni, Fe)-Catalyzed Cross-Coupling
Reactions Using Alkyl-organometallics as Reaction Partners. Chem.
Rev. 2011, 111, 1417–1492. (c) Cherney, A. H.; Kadunce, N. T.;
Reisman, S. E. Enantioselective and Enantiospecific Transition-Metal-
Catalyzed Cross-Coupling Reactions of Organometallic Reagents to
Construct C–C Bonds. Chem. Rev. 2015, 115, 9587–9652.
23. (a) Zweifel, G.; Arzoumanian, H.; Whitney, C. C. A Convenient
Stereoselective Synthesis of Substituted Alkenes via Hydroboration-
Iodination of Alkynes. J. Am. Chem. Soc. 1967, 89, 3652–3653. (b) For
a recent review, see: Armstrong, R. J.; Aggarwal, V. K. 50 Years of
Zweifel Olefination: a Transition-Metal-Free Coupling. Synthesis 2017,
49, 3323–3336.
as
a Powerful Means for Developing Broadly Useful C–H
Functionalization Reactions. Acc. Chem. Res. 2012, 45, 788–802.
16. (a) Thirunavukkarasu, V. S.; Ackermann, L. Ruthenium-Catalyzed C-H
Bond Oxygenations with Weakly Coordinating Ketones. Org. Lett.
2012, 14, 6206–6209. For selected examples of Ru-catalyzed C-H
hydroxylation, see: (b) Yang, F.; Ackermann, L. Ruthenium-Catalyzed
C–H Oxygenation on Aryl Weinreb Amides. Org. Lett. 2013, 15, 718–
720. (c) Yang, X.; Shan, G.; Rao, Y. Synthesis of 2-Aminophenols and
Heterocycles by Ru-Catalyzed C–H Mono- and Dihydroxylation. Org.
Lett. 2013, 15, 2334–2337. (d) Yang, Y.; Lin, Y.; Rao, Y.
Ruthenium(II)-Catalyzed Synthesis of Hydroxylated Arenes with Ester
as an Effective Directing Group. Org. Lett. 2012, 14, 2874–2877. (e)
Thirunavukkarasu, V. S.; Hubrich, J.; Ackermann, L. Ruthenium-
Catalyzed Oxidative C(sp2)-H Bond Hydroxylation: Site-Selective C-O
Bond Formation on Benzamides. Org. Lett. 2012, 14, 4210–4213. (f)
Shan, G.; Han, X.; Lin, Y.; Yu, S.; Rao, Y. Broadening the Catalyst and
Reaction Scope of Regio- and Chemoselective C-H Oxygenation: a
Convenient and Scalable Approach to 2-Acylphenols by Intriguing
Rh(II) and Ru(II) Catalysis. Org. Biomol. Chem. 2013, 11, 2318–2322.
24. (a) Rasmussen, J. K.; Krepski, L. R.; Heilmann, S. M.; Smith, H. K., II;
Tumey,
M.
L.
A
Convenient
Synthesis
of
1,2-
Bis[trimethylsiloxy]alkenes from α-Diketones. Synthesis 1983, 457–
595. (b) Boudjouk, P.; So, J. H. Organic Sonochemistry. Ultrasonic
Acceleration
of
the
Reaction
of
Dicarbonyls
with
Trimethylchlorosilane in the Presence of Zinc. Synth. Commun. 1986,
16, 775–778.
25. Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.;
Scott, H. K.; Aggarwal, V. K. Enantioselective Construction of
Quaternary Stereogenic Centers from Tertiary Boronic Esters:
Methodology and Applications. Angew. Chem., Int. Ed. 2011, 50,
3760–3763.
26. For beneficial use of pot economy in organic synthesis, see:
Hayashi, Y. Pot
Economy
and
One-Pot
Synthesis. Chem.
Sci. 2016, 7, 866–880.
ACS Paragon Plus Environment