Inorganic Chemistry
spectra, CV and LSV plots, electrochemical data, and
Article
Metal Electrocatalyst for Water Oxidation at Near-Neutral Ph. J. Catal.
2017, 356, 165−172.
(15) Zhu, Y.; Ma, T.; Jaroniec, M.; Qiao, S. Z. Self-Templating
Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient
Water Electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324−1328.
(16) Bagheri, S.; Chekin, F.; Hamid, S. B. A. Cobalt Doped Titanium
Dioxide Nanoparticles: Synthesis, Characterization and Electro-
catalytic Study. J. Chin. Chem. Soc. 2014, 61, 702−706.
(17) Chekin, F.; Tahermansouri, H.; Besharat, M. R. Nickel Oxide
Nanoparticles Prepared by Gelatin and Their Application toward the
Oxygen Evolution Reaction. J. Solid State Electrochem. 2014, 18, 747−
753.
(18) Chekin, F.; Bagheri, S.; Arof, A. K.; Hamid, S. B. A. Preparation
and Characterization of Ni(II)/Polyacrylonitrile and Carbon Nano-
tube Composite Modified Electrode and Application for Carbohy-
drates Electrocatalytic Oxidation. J. Solid State Electrochem. 2012, 16,
3245−3251.
(19) Raoof, J. B.; Chekin, F.; Ehsani, V. Cobalt Oxide Nanoparticle-
Modified Carbon Nanotubes as an Electrocatalysts for Electrocatalytic
Evolution of Oxygen Gas. Bull. Mater. Sci. 2015, 38, 135−140.
(20) Xie, L.; Tang, C.; Wang, K.; Du, G.; Asiri, A. M.; Sun, X.
Cu(OH)2@CoCO3(OH)2·nH2O Core-Shell Heterostructure Nano-
wire Array: An Efficient 3D Anodic Catalyst for Oxygen Evolution and
Methanol Electrooxidation. Small 2017, 13, 1602755.
(21) Xie, M.; Xiong, X.; Yang, L.; Shi, X.; Asiri, A. M.; Sun, X. An
Fe(TCNQ)2 Nanowire Array on Fe Foil: An Efficient Non-Noble-
Metal Catalyst for the Oxygen Evolution Reaction in Alkaline Media.
Chem. Commun. 2018, 54, 2300−2303.
(22) Zhu, W.; Yue, X.; Zhang, W.; Yu, S.; Zhang, Y.; Wang, J.; Wang,
J. Nickel Sulfide Microsphere Film on Ni Foam as an Efficient
Bifunctional Electrocatalyst for Overall Water Splitting. Chem.
Commun. 2016, 52, 1486−1489.
(23) Tang, C.; Cheng, N.; Pu, Z.; Xing, W.; Sun, X. NiSe Nanowire
Film Supported on Nickel Foam: An Efficient and Stable 3D
Bifunctional Electrode for Full Water Splitting. Angew. Chem. 2015,
127, 9483−9487.
(24) Stern, L. A.; Feng, L.; Song, F.; Hu, X. Ni2P as a Janus Catalyst
for Water Splitting: the Oxygen Evolution Activity of Ni2P
Nanoparticles. Energy Environ. Sci. 2015, 8, 2347−2351.
(25) Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan,
Y. Efficient Water Oxidation Using Nanostructured α-Nickel-
Hydroxide as an Electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077−
7084.
(26) Zhu, W.; Liu, L.; Yue, Z.; Zhang, W.; Yue, X.; Wang, J.; Yu, S.;
Wang, L.; Wang, J. Au Promoted Nickel-Iron Layered Double
Hydroxide Nanoarrays: A Modular Catalyst Enabling High-Perform-
ance Oxygen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 19807−
19814.
(27) Jin, Y.; Huang, S.; Yue, X.; Du, H.; Shen, P. K. Mo- and Fe-
Modified Ni(OH)2/NiOOH Nanosheets as Highly Active and Stable
Electrocatalysts for Oxygen Evolution Reaction. ACS Catal. 2018, 8,
2359−2363.
(28) Zhu, K.; Liu, H.; Li, M.; Li, X.; Wang, J.; Zhu, X.; Yang, W.
Atomic-Scale Topochemical Preparation of Crystalline Fe3+-Doped β-
Ni(OH)2 for an Ultrahigh-Rate Oxygen Evolution Reaction. J. Mater.
Chem. A 2017, 5, 7753−7758.
(29) Fominykh, K.; Chernev, P.; Zaharieva, I.; Sicklinger, J.; Stefanic,
G.; Doblinger, M.; Muller, A.; Pokharel, A.; Bocklein, S.; Scheu, C.;
Bein, T.; Fattakhova-Rohlfing, D. Iron-Doped Nickel Oxide Nano-
crystals as Highly Efficient Electrocatalysts for Alkaline Water Splitting.
ACS Nano 2015, 9, 5180−5188.
(30) Gao, W.; Xia, Z.; Cao, F.; Ho, J. C.; Jiang, Z.; Qu, Y.
Comprehensive Understanding of the Spatial Configurations of CeO2
in NiO for the Electrocatalytic Oxygen Evolution Reaction: Embedded
or Surface-Loaded. Adv. Funct. Mater. 2018, 28, 1706056.
(31) Xing, Z.; Gan, L.; Wang, J.; Yang, X. Experimental and
Theoretical Insights into Sustained Water Splitting with an Electro-
deposited Nanoporous Nickel Hydroxide@Nickel Film as an Electro-
catalyst. J. Mater. Chem. A 2017, 5, 7744−7748.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financed by the National Natural Science
Foundation of China (Grant 21675127), the Fundamental
Research Funds for the Northwest A&F University of China
(Grants 2014YB093 and 2452015257), and the Development
Project of Qinghai Key Laboratory (Grant 2017-ZJ-Y10).
REFERENCES
■
(1) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.;
Teets, T. S.; Nocera, D. G. Solar Energy Supply and Storage for the
Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474−6502.
(2) Chu, S.; Majumdar, A. Opportunities and Challenges for a
Sustainable Energy Future. Nature 2012, 488, 294−303.
(3) Walter, M. G.; Warren, E. L.; Mckone, J. R.; Boettcher, S. W.; Mi,
Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev.
2010, 110, 6446−6473.
(4) Koper, M. T. Hydrogen Electrocatalysis: A Basic Solution. Nat.
Chem. 2013, 5, 255−256.
(5) Park, S.; Shao, Y.; Liu, J.; Wang, Y. Oxygen Electrocatalysts for
Water Electrolyzers and Reversible Fuel Cells: Status and Perspective.
Energy Environ. Sci. 2012, 5, 9331−9344.
(6) Zhou, H.; Yu, F.; Sun, J.; He, R.; Chen, S.; Chu, C.-W.; Ren, Z.
Highly Active Catalyst Derived from a 3D Foam of Fe(PO3)2/Ni2P for
Extremely Efficient Water Oxidation. Proc. Natl. Acad. Sci. U. S. A.
2017, 114, 5607−5611.
(7) Xie, M.; Yang, L.; Ji, Y.; Wang, Z.; Ren, X.; Liu, Z.; Asiri, A. M.;
Xiong, X.; Sun, X. An Amorphous Co-Carbonate-Hydroxide Nanowire
Array for Efficient and Durable Oxygen Evolution Reaction in
Carbonate Electrolytes. Nanoscale 2017, 9, 16612−16615.
(8) Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Recent
Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical
Water Splitting. Adv. Mater. 2016, 28, 215−230.
(9) Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang,
J.; Regier, T.; Wei, F.; Dai, H. An Advanced Ni-Fe Layered Double
Hydroxide Electrocatalyst for Water Oxidation. J. Am. Chem. Soc.
2013, 135, 8452−8455.
(10) Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y.
Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for
Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett.
2012, 3, 399−404.
(11) Guo, Y.; Tong, Y.; Chen, P.; Xu, K.; Zhao, J.; Lin, Y.; Chu, W.;
Peng, Z.; Wu, C.; Xie, Y. Engineering the Electronic State of a
Perovskite Electrocatalyst for Synergistically Enhanced Oxygen
Evolution Reaction. Adv. Mater. 2015, 27, 5989−5994.
(12) Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.;
Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution
Catalysis from Molecular Orbital Principles. Science 2011, 334, 1383−
1385.
(13) Feng, J.; Xu, H.; Dong, Y.; Ye, S.; Tong, Y.; Li, G. FeOOH/Co/
FeOOH Hybrid Nanotube Arrays as High-Performance Electro-
catalysts for the Oxygen Evolution Reaction. Angew. Chem. 2016, 128,
3758−3762.
(14) Xie, F.; Wu, H.; Mou, J.; Lin, D.; Xu, C.; Wu, C.; Sun, X.
Ni3N@Ni-Ci Nanoarray as a Highly Active and Durable Non-Noble-
E
Inorg. Chem. XXXX, XXX, XXX−XXX