Angewandte
Chemie
Table 2: Application of 2 as a recyclable catalyst in reactions of synthetic
interest.
In summary, we have developed the first magnetic-
nanoparticle-supported DMAP analogue for use as a robust
heterogeneous nucleophilic catalyst of unprecedented activity
and recyclability. The catalyst is readily prepared by a concise
route from inexpensive commercially available starting
materials using standard laboratory techniques. It is readily
(quantifiably) loaded onto the support in a single step and is
capable of promoting a range of synthetically useful reactions
at room temperature with loadings (as low as 0.2 mol%) not
generally associated with heterogeneous organocatalysis.[27]
Recovery of the catalyst by decantation of the reaction
mixture in the presence of an external magnet is both
convenient and efficient. The ease of recovery, combined with
the intrinsic stability of both the organic and nanoparticle
catalyst components, allows the catalyst to be recycled over
30 times in a number of transformations without any dis-
cernible loss in activity. Studies to further explore the
potential of this powerful immobilization strategy for the
preparation of other heterogeneous organocatalysts of high
synthetic utility are underway.
Received: December 23, 2006
Revised: February 23, 2007
Published online: May 2, 2007
Keywords: 4-N,N-dialkylaminopyridines ·
.
heterogeneous catalysis · nanostructures ·
nucleophilic reactions · supported catalysts
Entry
Cycle
Substrate
Product
Loading
[mol%]
t
[h]
Yield[a]
[%]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
5
5
5
7
7
7
9
9
9
11
11
11
13
13
13
6
6
6
8
8
1
1
1
10
10
10
10
10
10
5
16
16
16
16
16
16
15
15
15
20
20
20
8
91
90
88
96
95
96
97
98
98
91
91
94
94
97
93
[1] a) L. M. Litvinenko, A. I. Kirichenko, Dokl. Chem. 1967, 763;
b) W. Steglich, G. Höfle, Angew. Chem. 1969, 81, 1001; Angew.
Chem. Int. Ed. Engl. 1969, 8, 981.
[2] For reviews, see: a) A. C. Spivey, S. Arseniyadis, Angew. Chem.
2004, 116, 5552; Angew. Chem. Int. Ed. 2004, 43, 54 36; b) R.
Murugan, E. F. V. Scriven, Aldrichimica Acta 2003, 36, 3401;
c) U. Ragnarsson, L. Grehn, Acc. Chem. Res. 1998, 31, 494;
d) E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129; e) G. Höfle, W.
Steglich, H. Vorbruggen, Angew. Chem. 1978, 90, 602; Angew.
Chem. Int. Ed. Engl. 1978, 17, 569.
[3] a) M. A. Hierl, E. P. Gamson, I. M. Klotz, J. Am. Chem. Soc.
1979, 101, 6020; b) E. J. Delaney, L. Wood, I. M. Klotz, J. Am.
Chem. Soc. 1982, 104, 799; c) S. Shinkai, H. Tsuji, Y. Hara, O.
Manabe, Bull. Chem. Soc. Jpn. 1981, 54, 631; d) M. Tomoi, Y.
Akada, H. Kakiuchi, Makromol. Chem. Rapid Commun. 1982, 3,
537; e) F. M. Menger, D. J. McCann, J. Org. Chem. 1985, 50,
3928; f) W. Storck, G. Manecke, J. Mol. Catal. 1985, 30, 145; g) F.
Guendouz, R. Jacquier, J. Verducci, Tetrahedron 1988, 44, 7095;
h) A. Corma, H. Garcia, A. Leyva, Chem. Commun. 2003, 2806;
i) J.-W. Huang, M. Shi, Adv. Synth. Catal. 2003, 345, 953; j) G.
Preim, B. Pelotier, S. J. F. Macdonald, M. S. Anson, I. B. Camp-
bell, Synlett 2003, 679.
[4] For reviews, see: a) M. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev.
2003, 103, 3401; b) F. Cozzi, Adv. Synth. Catal. 2006, 348, 1367;
c) M. Benaglia, New J. Chem. 2006, 30, 1525.
[5] a) S. Rubinsztajn, M. Zeldin, W. K. Fife, Macromolecules 1990,
23, 4026; b) S. Rubinsztajn, M. Zeldin, W. K. Fife, Macromole-
cules 1991, 24, 2682.
[6] General review: C. E. Song, S.-G. Lee, Chem. Rev. 2002, 102,
3495.
[7] H.-T. Chen, S. Huh, J. W. Wiench, M. Pruski, V. S.-Y. Lin, J. Am.
Chem. Soc. 2005, 127, 13305.
8
10
10
10
12
12
12
14
14
14
5
5
1
1
8
8
1
[a] Yield of isolated product.
Table 2). The catalyst is compatible with the hindered
acylating agent isobutyric anhydride (allowing the esterifica-
tion of monoprotected diol 11; entries 10–12, Table 2) and
promotes the rearrangement of O-acyl enolate 13 to afford
the azalactone 14 (entries 13–15, Table 2), which incorporates
a quaternary stereogenic centre.[25,26]
No catalyst degradation (physical or chemical) was
discernable after 30 consecutive catalyst cycles (Tables 1 and
2). To demonstrate that 2 had retained high catalytic activity
at this juncture, the acylation of 3 with 0.2 mol% catalyst
loading (Scheme 2) was repeated. Pleasingly, an almost
identical level of conversion to 4 (80%) was observed in the
31st cycle.
Angew. Chem. Int. Ed. 2007, 46, 4329 –4332
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4331