LETTER
Procedure for the Synthesis of N,N¢-Di-Boc-Protected Guanidines
3371
(7) (a) Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. J. Org.
Chem. 1992, 57, 2497. (b) Drake, B.; Patek, M.; Lebl, M.
Synthesis 1994, 579. (c) Patek, M.; Smrcina, M.; Nakanishi,
E.; Izawa, H. J. Comb. Chem. 2000, 2, 370. (d) Drager, G.;
Solodenko, W.; Messinger, J.; Schön, U.; Kirschning, A.
Tetrahedron Lett. 2002, 43, 1401. (e) Castillo-Melendez,
J. A.; Golding, B. T. Synthesis 2004, 1655. (f) Solodenko,
W.; Bröker, P.; Messinger, J.; Schön, U.; Kirschning, A.
Synthesis 2006, 461.
In conclusion, we have developed a novel and efficient
synthetic procedure for converting a diverse set of amines
into N,N¢-di-Boc-protected guanidines. The reaction con-
sists of an attack of primary and secondary amines on di-
Boc-thiourea activated by a very cheap promoter (TCT).
This protocol provides an alternative route for the guany-
lation of amines from those currently employed. An at-
tractive feature of this methodology is that the reaction
occurs under mild conditions, and without producing any
significant side and/or environmental hazardous products.
Furthermore, at the end of the reaction, a simple aqueous
workup followed by filtration through a short plug of sili-
ca gel affords the desired products pure and in moderate
to high yields.
(8) Palmer, D. C. O-Methylisourea, In Encyclopedia of
Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley:
Sussex, 1995, 3525–3526.
(9) Feichtinger, K.; Zapf, C.; Sings, H. L.; Goodman, M. J. Org.
Chem. 1998, 63, 3804.
(10) (a) Levallet, C.; Lerpiniere, J.; Ko, S. Y. Tetrahedron 1997,
53, 5291. (b) Guo, Z. X.; Cammidge, A. N.; Horwell, D. C.
Synth. Commun. 2000, 30, 2933. (c) Gers, T.; Kunce, D.;
Markowski, P.; Izdebski, J. Synthesis 2004, 37.
(11) Yong, Y. F.; Kowalski, J. A.; Lipton, M. A. J. Org. Chem.
1997, 62, 1540.
(12) Many of these reagents present difficulties such as toxicity,
odour, moisture-sensitivity, harsh reaction conditions, and
long reaction time.
(13) The application of reagents containing two urethane-type
protecting groups is beneficial since two electron-
withdrawing groups in positions conjugated with the
reaction center increase the electrophilicity and the
solubility of the guanylating agent.
Acknowledgment
This work was financially supported by the Università degli Studi
di Sassari and MIUR (ROME) within the project PRIN: ‘Structure
and Activity Studies of DNA Quadruplex through the Exploitation
of Synthetic Oligonucleotides and Analogues’.
References and Notes
(1) (a) Guanidines: Historical, Biological, Biochemical and
Clinical Aspects of the Naturally Occurring Guanidino
Compounds; Mori, A.; Cohen, B. D.; Lowenthal, A., Eds.;
Plenum Press: New York, 1985. (b) Guanidines 2: Further
Explorations of the Biological and Clinical Significance of
Guanidino Compounds; Mori, A.; Cohen, B. D.; Koide, H.,
Eds.; Plenum Press: New York, 1987. (c) Feichtier, K.;
Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M.
J. Org. Chem. 1998, 63, 8432. (d) Le, V.-D.; Wong, C.-H.
J. Org. Chem. 2000, 65, 2399. (e) McAlpine, I. J.;
Armstrong, R. W. Tetrahedron Lett. 2000, 41, 1849. (f) De
Clercq, E. Nat. Rev. Drug Discovery 2006, 5, 1015.
(2) (a) Petersen, M. J.; Nielsen, C. K.; Arrigoni-Martelli, E.
J. Med. Chem. 1978, 21, 773. (b) Ganelin, C. R. Chronicles
of Drug Discovery, Vol. 1; Bindra, J. S.; Lednicer, D., Eds.;
Wiley: New York, 1982, 1–38. (c) Taniguchi, K.;
Shigenaga, S.; Ogahara, T.; Fujitsu, T.; Matsno, M. Chem.
Pharm. Bull. 1993, 41, 301. (d) Yoshiizumi, K.; Seko, N.;
Nishimura, N.; Ikeda, S.; Yoshino, K.; Kondo, H.;
Tanizawa, K. Bioorg. Med. Chem. Lett. 1998, 8, 3397.
(3) (a) Heys, L.; Moore, C. G.; Murphy, P. J. Chem. Soc. Rev.
2000, 29, 57; and references cited there. (b) Schug, K. A.;
Lindner, W. Chem. Rev. 2005, 105, 67.
(4) (a) Cotton, F. A.; Day, V. W.; Hazen, E. E. Jr.; Larsen, S.
J. Am. Chem. Soc. 1973, 95, 4834. (b) Schneider, S. E.;
Bishop, P. A.; Salazar, M. A.; Bishop, O. A.; Anslyn, E. V.
Tetrahedron 1998, 54, 15063. (c) Linton, B.; Hamilton,
A. D. Tetrahedron 1999, 55, 6027. (d) Linton, B. R.; Carr,
A. J.; Orner, B. P.; Hamilton, A. D. J. Org. Chem. 2000, 65,
1566.
(5) (a) Orner, B. P.; Hamilton, A. D. J. Inclusion Phenom.
Macrocyclic Chem. 2001, 41, 141. (b) Manimala, J. C.;
Anslyn, E. V. Eur. J. Org. Chem. 2002, 3909. (c)Katritzky,
A. R.; Rogovoy, B. V. ARKIVOC 2005, (iv), 49. (d) Ohara,
K.; Vasseur, J.-J.; Smietana, M. Tetrahedron Lett. 2009, 50,
1463.
(14) Porcheddu, A.; Giacomelli, G.; Piredda, I. J. Comb. Chem.
2009, 11, 126.
(15) Porcheddu, A.; Giacomelli, G.; Chighine, A.; Masala, S.
Org. Lett. 2004, 6, 4925.
(16) (a) Falorni, M.; Porcheddu, A.; Taddei, M. Tetrahedron Lett.
1999, 40, 4395. (b) Blotny, G. Tetrahedron 2006, 62, 9507;
and references cited therein. (c) Giacomelli, G.; Porcheddu,
A. 1,3,5-Triazines, In Comprehensive Heterocyclic
Chemistry III, Vol. 9; Katritzky, A. R.; Ramsden, C. A.;
Scriven, E. F. V.; Taylor, R. J. K., Eds.; Elsevier: Oxford,
2008, 197–290.
(17) Generally, the conversion of protected thiourea into a
guanidine requires initial activation.
(18) In particularly, we were interested in replacing the
traditional activating Mukaiyama reagent with the readily
available cyanuric chloride for the guanylation of di-Boc-
protected thiourea.
(19) The use of NMM or Et3N proved to be crucial to reaction
success. Without a base, the reaction did not take place.
(20) Adding a catalytic amount of DMAP we have detected an
increased reaction rate.
(21) The Boc protecting group was then removed by treatment
with 3 M anhyd methanolic HCl, to yield the guanidine as
the HCl salt in 96% isolated yield.
(22) The ability to use only 0.33 equiv of the TCT as guanylating
agent is advantageous since it minimizes reagent
consumption and byproduct generation compared to the
Mukaiyama reagent and S-methylisothioureas derivatives.
Moreover our method does not give off toxic gaseous side
product such as methyl mercaptan that is generated using
N,N¢¢-bis-Boc-S-methylisotiourea as guanylating reagent
(see ref. 10a–c).
(23) Representative Procedure for the Synthesis of N,N¢¢-
Di-Boc-protected Guanidines: N,N¢-Bis(tert-butoxy-
carbonyl)-N¢¢-benzylguanidine (3a)
(6) Schow, S. Cyanamide, In Encyclopedia of Reagents for
Organic Synthesis; Paquette, L. A., Ed.; Wiley: Sussex,
1996, 1408–1410.
To a solution of cyanuric chloride (185 mg, 1.0 mmol) in dry
THF (20 mL), N-methylmorpholine (303 mg, 330 mL, 3.0
mmol) was added at 0 °C under argon and with vigorous
stirring. A white suspension was formed to which a solution
Synlett 2009, No. 20, 3368–3372 © Thieme Stuttgart · New York