Paper
RSC Advances
7
8
9
H. Kawakami, T. Ebata and H. Matsushita, Agric. Biol. Chem.,
1991, 55, 1687–1688.
H. Takeya, H. Ueki, S. Miyanari, T. Shimizu and M. Kojima, J.
Photochem. Photobiol., A, 1996, 94, 167–171.
A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411–
2502.
1
1
0 M. Mascal and S. Dutta, Green Chem., 2010, 13, 40–41.
1 L. Cottier, G. Descotes, L. Eymard and K. Rapp, Cheminform,
1995, 303–306.
1
2 R. J. van Putten, J. C. van der Waal, E. de Jong,
C. B. Rasrendra, H. J. Heeres and J. G. de Vries, Chem.
Rev., 2013, 113, 1499–1597.
Scheme 2 The proposed mechanism of conversion of ML to M5B with
2
CuBr .
13 M. Mascal, ChemSusChem, 2015, 8, 3391–3395.
14 S. G. Wettstein, D. M. Alonso, E. I. Gurbuz and J. A. Dumesic,
a key chemical that has been widely applied in medical and
agricultural areas. CuBr
bromine atom donor and was demonstrated to be of higher
selectivity and activity than the conventional hazardous Br
ML bromination. Each stage proceeds in high (ꢁ85%) yield and
affords 5-ALA in 95% purity, giving a process that could be
commercially viable.
Curr. Opin. Chem. Eng., 2012, 1, 218–224.
was applied as both catalyst and 15 D. M. Alonso, J. Q. Bond and J. A. Dumesic, Green Chem.,
2
2010, 12, 1493–1513.
in 16 D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes and J. R. H. Ross,
The Bione Process – Production of Levulinic Acid, Furfural, and
Formic Acid from Lignocellulosic Feedstocks, Wiley-VCH Verlag
GmbH & Co., 2008, pp. 139–164.
2
1
7 H. J. Ha, S. K. Lee, Y. J. Ha and J. W. Park, Synth. Commun.,
994, 24, 2557–2562.
1
Conflicts of interest
1
8 V. Z. Shirinian, D. V. Lonshakov, V. V. Kachala, I. V. Zavarzin,
A. A. Shimkin, A. G. Lvov and M. K. Mikhail, Regio- and
chemoselective bromination of 2,3-diarylcyclopent-2-en-1-
ones, J. Org. Chem., 2012, 77, 8112–8123.
There are no conicts to declare.
Acknowledgements
1
9 R. H. Vekariya and H. D. Patel, Synthesis of a-bromocarbonyl
We thank for the nancial support from the National Natural
Science Foundation of China (Grant No. 21506177; 21676223),
the Fundamental Research Funds for the Central Universities
compounds: recent advances, Tetrahedron, 2014, 70, 3949–
3961.
2
2
2
2
0 L. Moens, Synthesis of d-Aminolevulinic Acid, ACS Symp.
Ser., 2001, 784, 37–50.
1 D. R. Lane, M. Mascal and P. Stroeve, Renewable Energy,
2016, 85, 994–1001.
2 T. Liu, J. Sun, Q. Wang, L. Li and M. D. Zhou, Eur. J. Org.
Chem., 2017, 2017, 1915–1921.
(Grant No. 20720160087; 20720160077; 20720170062), and the
Energy Development Foundation of the College of Energy, Xia-
men University (No. 2017NYFZ02).
Notes and references
3 M. Y. Zhou, S. S. Kong, L. Q. Zhang, M. Zhao, J. A. Duan,
Z. Ou-Yang and M. Wang, Tetrahedron Lett., 2013, 54,
1
2
3
4
5
6
K. Sasaki, M. Watanabe, T. Tanaka and T. Tanaka, Appl.
Microbiol. Biotechnol., 2002, 58, 23–29.
M. C. Tetard, M. Vermandel, S. Mordon and J. P. Lejeune,
Photodiagn. Photodyn. Ther., 2014, 11, 319–330.
T. Ishikawa, Y. Kajimoto, Y. Inoue, Y. Ikegami and
T. Kuroiwa, Adv. Cancer Res., 2015, 125, 197.
H. Fukuda, A. Casas and A. Batlle, Int. J. Biochem. Cell Biol.,
3962–3964.
2
4 R. W. Evans, J. R. Zbieg, S. Zhu, W. Li and
D. W. C. Macmillan, J. Am. Chem. Soc., 2013, 135, 16074–
16077.
2
2
2
5 L. Moens, US005907058A, Lakewood and Colo, 1999.
6 L. Moens, US006583317B1, Lakewood and Colo, 2003.
7 J. J. Bozell, L. Moens, D. C. Elliott, Y. Wang,
G. G. Neuenscwander, S. W. Fitzpatrick, R. J. Bilski and
J. L. Jarnefeld, Resour., Conserv. Recycl., 2000, 28, 227–239.
2005, 37, 272–276.
Z. J. Zhang, H. Z. Li, W. J. Zhou, Y. Takeuchi and
K. Yoneyama, Plant Growth Regul., 2006, 49, 27–34.
S. L. Liu, G. M. Zhang, X. K. Li and J. Zhang, Appl. Microbiol.
Biotechnol., 2014, 98, 7349–7357.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 10091–10093 | 10093