Angewandte Chemie International Edition
10.1002/anie.201900401
COMMUNICATION
up using H
2
O
2
under slightly basic conditions resulted in a clean
B. Trepel, J. A. Beutler, W. M. Linehan, L. Neckers, Cancer Cell 2013,
23, 228; (c) Y. Akbulut, J. Gaunt, K. Muraki, M. J. Ludlow, M. S. Amer,
oxidation of the C-Si-bond in 21 to give allylic alcohol 22 with
retention of the configuration. Starting from 19 alcohol 22 was
formed in diastereomerically pure form in 58 % yield. Up to this
point we were hoping to increase both the enantiopurity and to
install the hydroxy group in 23 with correct relative configuration
through the use of an asymmetric Corey-Bakshi-Shibata (CBS)
reduction after a Ley-oxidation of 22 (Scheme 3).[14] Indeed, this
strategy turned out to be particularly successful, the desired
alcohol 23 was isolated with 95% enantiomeric excess and an
overall yield of 60% starting from 22. Unfavourable steric
interactions between the catalyst and the undesired enantiomer
might explain the high degree of kinetic resolution (Figure 2). In
addition, the reduction of the intermediate ,-unsaturated
ketone using standard protocols with non-chiral reagents (e.g.
A. Burns, N. S. Vasudev, L. Radtke, M. Willot, S. Hahn, T. Seitz, S.
Ziegler, M. Christmann, D. J. Beech, H. Waldmann, Angew. Chem. Int.
Ed. 2015, 54, 3787 – 3791; Angew. Chem. 2015, 127, 3858 – 3862; (d)
T. Rodrigues, F. Sieglitz, V. J. Somovilla, P. M. S. D. Cal, A. Galione, F.
Corzana, G. J. L. Bernardes, Angew. Chem. Int. Ed. 2016, 55, 11077 –
11081; Angew. Chem. 2016, 128, 11243 – 11247.
[3]
[4]
http://dtp.nci.nih.gov/dtpstandard/cancerscreeningdata/index.jsp.
For total synthesis of (±)-englerin A, see: (a) K. C. Nicolaou, Q. Kang, S.
Y. Ng, D. Y. K. Chen, J. Am. Chem. Soc. 2010, 132, 8219 – 8222; (b) H.
Kusama, A. Tazawa, K. Ishida, N. Iwasawa, Chem, Asian J. 2016, 11,
64 – 67;
[
5]
For enantioselective total synthesis of englerins from chiral pool
materials, see: (a) M. Willot, L. Radtke, D. Könning, R. Fröhlich, V. H.
Gessner, C. Strohmann, M. Christmann, Angew. Chem. Int. Ed. 2009,
48, 9105 – 9108; Angew. Chem. 2009, 121, 9269 – 9272; (b) Q. Zhou,
X. Chen, D. Ma, Angew. Chem. Int. Ed. 2010, 49, 3513 – 3516; Angew.
Chem. 2010, 122, 3591 – 3594; (c) L. Radtke, M. Willot, H. Sun, S.
Ziegler, S. Sauerland, C. Strohmann, R. Fröhlich, P. Habenberger, H.
Waldmann, M. Christmann, Angew. Chem. Int. Ed. 2011, 50, 3998 –
3 4
CeCl /NaBH , etc.) gave alcohol 23 alongside with a variety of
side-products. As such, this example nicely illustrates the
privileged role of CBS-type Lewis-acids both with regard to
stereo-, but also to regio- and chemoselectivity in asymmetric
4002; Angew. Chem. 2011, 123, 4084 – 4088; (d) Z. Li, M. Nakashige,
catalysis.[
14]
Finally, diastereoselective hydrogenation of the
W.J. Chain, J. Am. Chem. Soc. 2011, 133, 6553 6556; (e) K.
-
endocyclic double bond following Ma´s elegant approach[5b] led
to fully saturated tricycle 24 in 86% yield. Esterification and
deprotection provided (-)-englerin A in 79% yield over both steps.
Selective saponification of the more reactive glycolic ester
moiety gave (-)-englerin B in another 71% yield.
Takahashi, K. Komine. Y. Yokoi, J. Ishihara, S. Hatakeyama, J. Org.
Chem. 2012, 77, 7364 – 7370; (f) M. Zahel, A. Kessberg, P. Metz,
Angew. Chem. Int. Ed. 2013, 52, 5390 – 5392; Angew. Chem. 2013,
125, 5500
– 5502; (g) J. Zhang, S. Zheng, W. Peng, Z. Shen,
Tetrahedron Lett. 2014, 55, 1339 – 1341; (h) P. Liu, Y. Cui, K. Chen, X.
Zhou, W. Pan, J. Ren, Z. Wang, Org. Lett. 2018, 20, 2517 – 2521.
For catalytic enantioselective total synthesis of englerins, see: (a) K.
Molawi, N. Delpint, A. M. Echavarren, Angew. Chem. Int. Ed. 2010, 49,
2517 – 3519; Angew. Chem. 2010, 122, 3593 – 3597; (b) J. Wang, S.
Chen, B. Sun, G. Lin, Y. Shang, Chem. Eur. J. 2013, 19, 2539 – 2547;
In summary we were able to develop a conceptually novel
[
6]
12 step synthesis of (-)-englerin A starting from methylglyoxal
and featuring an asymmetric organocatalytic decarboxylative
aldol reaction, a [4+3]-cycloaddition of β-ketoester-derived bis-
(c) T. Hanari, N. Shimada, Y. Kurosaki, N. Thrimurtulu, H. Nambu, M.
silylenolether to
a
1,4-diketone and formation of the
Anada, S. Hashimoto, Chem. Eur. J. 2015, 21, 11671 – 11676; (d) R.
Nelson, M. Gulias, J. L. Mascarenas, L. Lopez, Angew. Chem. Int. Ed.
cyclopentane motif through a sequential Pd-catalyzed Heck-
reaction-1,4-hydrosilylation-Tamao-Fleming oxidation. Kinetic
discrimination via a CBS-reduction step allowed to obtain an
advanced intermediate in more than 95% enantiomeric excess.
Overall, the synthesis allows the preparation of the natural
product in 6.7% overall yield starting from methylglyoxal. The
modularity of the synthesis which is based on the initial catalytic
decarboxylative aldol-reaction sets the stage for the preparation
of a potential englerin A-library to improve and study the mode-
of-action. Future work will concentrate on these aspects.
2016, 55, 14359 – 14363; Angew. Chem. 2016, 128, 14571 – 14575.
[
7]
For a selective formal synthesis of englerins, see: (a) J. Xu, E. J. E. C.
Diaz, E. A. Theodorakis, Org. Lett. 2010, 12, 3708 – 3711; (b) V.
Navickas, D. B. Ushakov, M. E. Maier, M. Ströbele, H. J. Meyer, Org.
Lett. 2010, 12, 3418 – 3421; (c) B. Sun, C. Wang, R. Ding, J. Xu, G. Lin,
Tetrahedron Lett. 2011, 52, 2155 – 2158; (d) J. Lee, K. A. Parker, Org.
Lett. 2012, 14, 2682 – 2685; (e) P. Gao, S. P. Cook, Org. Lett. 2012, 14,
3340 – 3343; (f) C. Wang, B. Sun, S. Chen, R. Ding, G. Lin, J. Xu, Y.
Shang, Synlett 2012, 23, 263 – 266; (g) K. Morisaki, Y. Sasano, T.
Koseki, T. Shibuta, N. Kanoh, W. Chiou, Y. Iwabuchi, Org. Lett. 2017,
19, 5142 – 5145; (h) S. Hagihara, K. Hanaya, T. Sugai, M. Shoji, J.
Antibiot. 2018, 71, 257 – 262.
[
8]
9]
(a) N. Biber, K. Möws, B. Plietker, Nat. Chem. 2011, 3, 938 – 942; (b) K.
Lindermayr, B. Plietker, Angew. Chem. Int. Ed. 2013, 52, 12183 –
Acknowledgements
12186; Angew. Chem. 2013, 125, 12405 – 12408; (c) F. Horeischi, N.
Financial support by the Deutsche Forschungsgemeinschaft and
the China Scholarship Council (Ph.D.-grant for L.G.) is gratefully
acknowledged.
Biber, B. Plietker, J. Am. Chem. Soc. 2014, 136, 4026 – 4030.
(a) N. Ren, J. Nie, J. Ma, Green Chem. 2016, 18, 6609 – 6617; (b)
details on the optimization of the non-enantioselective aldol reaction are
listed in the supporting information.
[
[
10] For organocatalytic decarboxlative aldol reaction using malonic acid
derivatives see: (a) Y. Zheng, H. Xiong, J. Nie, M. Hua, J. Ma, Chem.
Commun. 2012, 48, 4308 – 4310; (b) H. Y. Bae, J. H. Sim, J. Lee, B.
List, C. E. Song, Angew. Chem. Int. Ed. 2013, 52, 12143 – 12147;
Angew. Chem. 2013, 125, 12365 – 12369; (c) Z. Yang, J. Zeng, N. Ren,
W. Meng, J. Nie, J. Ma, Org. Lett. 2016, 18, 6364 – 6367.
Keywords: organocatalysis • asymmetric catalysis • natural
product • antitumor • total synthesis
[
1]
(a) R. Ratnayake, D. Covell, T. T. Ransom, K. R. Gustafson, J. A.
Beutler, Org. Lett. 2009, 11, 57 – 60; (b) J. A. Beutler, R. Ratnayake, D.
Covell, T. T. R, Johnson, WO 088854, 2009; (c) Z. Wu, S. Zhao, D. M.
Fash, Z. Li, W. J. Chain, J. A. Beutler, J. Nat. Prod. 2017, 80, 771 – 781.
(a) F. J. Sulzmaier, Z. Li, M. L. Nakashige, D. M. Fash, W. J. Chain, J.
W. Ramos, PloS One 2012, 7, e48032; (b) C. Sourbier, B. T. Scroggins,
R. Ratnayake, T. L. Prince, S. Lee, M. J. Lee, P. L. Nagy, Y. H. Lee, J.
[11] (a) G. A. Molander, S. W. Anrews, Tetrahedron Lett. 1989, 18, 2351 -
2
2
1
354; (b) G. A. Molander, K. O. Caremon, J. Org. Chem. 1991, 56,
[
2]
617 – 2619; (c) G. A. Molander, K. O. Caremon, J. Am. Chem. Soc.
993, 115, 830 – 846.
[12] No enantiomeric excess erosion occurred in this cycloaddition, see SI.
This article is protected by copyright. All rights reserved.