Organic Letters
Letter
Product formation was monitored for each transformation and
zero and first-order processes were found to fit the data
depending upon which catalyst, if any, was used. Consequently,
qualitative results are reported (Table 3), but it is apparent that
ACKNOWLEDGMENTS
■
Generous support from the National Science Foundation is
gratefully acknowledged.
REFERENCES
■
Table 3. Catalytic Results for the Solvent Free Aminolysis of
Styrene Oxide with Aniline
(1) (a) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
(b) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc.
Rev. 2012, 41, 2406. (c) Wende, R. C.; Schreiner, P. R. Green Chem.
2012, 14, 1821. (d) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat.
Chem. 2012, 4, 603. (e) Auvil, T. J.; Schafer, A. G.; Mattson, A. E. Eur.
J. Org. Chem. 2014, 2014, 2633.
entry
cat.
mol %
t (h)
% conv
9/10
1
2
3
4
5
2.33
2.33
2.33
0.5
5.8
39
55
93
53
38:62
35:65
13:87
10:90
10:90
2
3
4
4
1
1
(2) (a) Yu, S.; Pu, L. Tetrahedron 2015, 71, 745. (b) Li, G.; Liu, F.;
Wu, M. ARKIVOC 2015, 6, 140.
1
0.1
0.5
(3) (a) Tran, N. T.; Wilson, S. O.; Franz, A. K. Org. Lett. 2012, 14,
186. (b) Schafer, A. G.; Wieting, J. M.; Fisher, T. J.; Mattson, A. E.
Angew. Chem., Int. Ed. 2013, 52, 11321. (c) Wieting, J. M.; Fisher, T. J.;
Schafer, A. G.; Visco, M. D.; Gallucci, J. C.; Mattson, A. E. Eur. J. Org.
Chem. 2015, 2015, 525.
(4) (a) Wurm, F. R.; Klok, H.-A. Chem. Soc. Rev. 2013, 42, 8220.
(b) Tsakos, M.; Kokotos, C. G. Tetrahedron 2013, 69, 10199.
(c) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv.
Synth. Catal. 2015, 357, 253.
(5) (a) Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem., Int. Ed.
2001, 40, 92. (b) Pellissier, H. Tetrahedron 2008, 64, 10279.
(c) Gratzer, K.; Gururaja, G. N.; Waser, M. Eur. J. Org. Chem. 2013,
2013, 4471.
3 and 4 are much more effective catalysts than 2. That is,
significantly higher selectivities and greater conversions are
observed (e.g., 4 gives a 93% conversion in 0.5 h whereas only
39% of the starting material has reacted in 2.33 h with 2). The
dicharged thiourea was also found to outperform 2 even when
10 times less was used (i.e., 0.1 mol % of 4 led to a 53%
conversion in 0.5 h whereas 39% of the reactant went on to
product in 2.33 h with 1 mol % of 2).24
Charged substituents are not especially effective in enhancing
acidities and lowering pKa values in polar solvents.16,25 Based
upon the 2.4 and 1.3 pKa unit acidifying effect of a m-CF3 group
on phenol and N,N′-diphenylthiourea,8,26 respectively, and the
recently measured 5.5 pKa difference between phenol and 3-
hydroxy-N-octylpyrinium ion16 all in dimethyl sulfoxide
(DMSO), one can estimate that pKa(3) = 10.4.27 This value
is essentially the same as incorporating two meta trifluor-
omethyl groups into 1 and consequently 3 is ∼2 pKa units less
acidic than Schreiner’s thiourea.8 In nonpolar solvents, a
reversal in their relative acidities undoubtedly takes place. As a
result, incorporation of a single positively charged center into a
thiourea without adding a new hydrogen bond site was found
to be catalytically more effective than the four electron-
withdrawing trifluoromethyl groups in Schreiner’s thiourea.28
Addition of a second ionic center presumably enhances the
DMSO acidity of 4 so that it is similar to 2 but leads to rate
accelerations of ∼102−103. These results represent a new
strategy for activating hydrogen bond catalysts, and a potential
means for improving stereoselectivities since lower temper-
atures typically can be employed when transformations occur
more rapidly at room temperature.29
(6) (a) Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187.
(b) Kotke, M.; Schreiner, P. R. In Hydrogen Bonding in Organic
Synthesis; Pihko, P. M., Ed.; Wiley; New York, 2009; p 141. (c) Hof,
K.; Lippert, M.; Schreiner, P. R. In Asymmetric Organocatalysis, Science
of Synthesis; Maruoka, K., Ed.; Thieme: Stuttgart, Germany, 2012; Vol.
2, p 297. (d) Takemoto, Y.; Inokuma, T. In Asymmetric Synthesis II;
Christmann, M., Brase, S., Eds.; Wiley: New York, 2012; p 233.
̈
(e) Serdyuk, O. V.; Heckel, C. M.; Tsogoeva, S. B. Org. Biomol. Chem.
2013, 11, 7051. (f) Jakab, G.; Schreiner, P. R. In Comprehensive
Enantioselective Organocatalysis; Dalko, P. I., Ed.; Wiley; New York,
2013; Vol. 2, p 315. (g) Jiang, J.; Gong, L.-Z. In Catalytic Cascade
Reactions; Xu, P.-F., Wang, W., Eds.; Wiley; New York, 2014; p 53.
(h) Fang, X.; Wang, C.-J. Chem. Commun. 2015, 51, 1185.
(7) (a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217.
(b) Wittkopp, A.; Schreiner, P. R. Chem. - Eur. J. 2003, 9, 407.
(c) Lippert, K. M.; Hof, K.; Gerbig, D.; Ley, D.; Hausmann, H.;
Guenther, S.; Schreiner, P. R. Eur. J. Org. Chem. 2012, 2012, 5919.
(8) Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R.
Org. Lett. 2012, 14, 1724.
(9) (a) Schuster, T.; Kurz, M.; Gobel, M. W. J. Org. Chem. 2000, 65,
̈
1697. (b) Akalay, D.; Durner, G.; Bats, J. W.; Bolte, M.; Gobel, M. W.
J. Org. Chem. 2007, 72, 5618.
̈
̈
(10) Huang, J.; Corey, E. J. Org. Lett. 2004, 6, 5027.
(11) (a) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157.
(b) Terada, M.; Ube, H.; Yaguchi, Y. J. Am. Chem. Soc. 2006, 128,
1454. (c) Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006,
128, 16044. (d) Uyeda, C.; Jacobsen, E. N. J. Am. Chem. Soc. 2008,
130, 9228. (e) Leow, D.; Tan, C.-H. Synlett 2010, 1589. (f) Uyeda, C.;
Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 5062. (g) Selig, P.
Synthesis 2013, 45, 703.
(12) (a) Takenaka, N.; Sarangthem, R. S.; Seerla, S. K. Org. Lett.
2007, 9, 2819. (b) Takenaka, N.; Chen, J.; Captain, B.; Sarangthem, R.
S.; Chandrakumar, A. J. Am. Chem. Soc. 2010, 132, 4536.
(13) (a) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem.
Soc. 2004, 126, 3418−3419. (b) Singh, A.; Yoder, R. A.; Shen, B.;
Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466. (c) Singh, A.;
Johnston, J. N. J. Am. Chem. Soc. 2008, 130, 5866. (d) Ganesh, M.;
Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, NMR spectra, and reaction
AUTHOR INFORMATION
Corresponding Author
■
(14) Bolm, C.; Rantanen, T.; Schiffers, I.; Zani, L. Angew. Chem., Int.
Ed. 2005, 44, 1758.
Notes
(15) Berkessel, A.; Das, S.; Pekel, D.; Neudorfl, J.-M. Angew. Chem.,
̈
The authors declare no competing financial interest.
Int. Ed. 2014, 53, 11660.
C
Org. Lett. XXXX, XXX, XXX−XXX