Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
4566
D. D. Jadhav et al. / Tetrahedron Letters 57 (2016) 4563–4567
Thus, the fungal system, F. proliferatum can be used for large-
scale production of corresponding (R)-alcohols through kinetic res-
olution of acyclic and aromatic acetates with fine tuning of the fer-
mentation conditions.
Conclusion
In conclusion, an efficient one-pot two step de-esterification/
oxidation biocatalytic technique was developed for the kinetic res-
olution of acyclic and aromatic acetates by using the whole-cells of
Fusarium proliferatum. The fungal system was able to carry out the
kinetic resolution of four racemic acyclic esters [( )-lavandulyl
acetate (1), ( )-2-hexyl acetate (2), ( )-2-heptyl acetate (3) and
( )-1-octen-3-yl acetate (5)] and three aromatic esters [( )-1-phe-
nylethyl acetate (6), ( )-3-methyl-1-phenylethyl acetate (8) and
( )-1-phenylpropyl acetate (9)] into corresponding (R)-alcohols in
an efficient manner with high ee. Enantioselective hydrolysis of
( )-1-phenylethyl acetate (6) to (R)-(+)-1-phenylethanol (6a) was
successfully scaled up to preparative scale, which indicated great
potential of the developed process to be applied in large scale
preparation of enantiopure (R)-alcohols.
Acknowledgement
D.D.J. and H.S.P. acknowledges ICMR and CSIR, New Delhi, India
for their research fellowship. We thank Mr. G. Nagesh Reddy for
helping in synthesis. This work is supported by CSIR-New Delhi,
India sponsored network project (CSC0106 and CSC0130).
Figure 3. (A) Schematic representation of de-esterification/oxidation one-pot two-
step kinetic resolution of acyclic/aromatic acetates by F. proliferatum; (B) GC-FID
chromatograms of (i) extracted reaction mixture of ( )-2-hexyl acetate with resting
cell of F. proliferatum after 2 h of incubation period, (ii) standard 2-hexanone (iii)
standard (S)-(+)-2-hexanol, (iv) standard (R)-(À)-2-hexanol, (v) standard (S)-(+)-2-
hexyl acetate and (vi) standard (R)-(À)-2-hexyl acetate.
Supplementary data
Supplementary data associated with this article can be found, in
084.
References and notes
selective oxidation of (S)-alcohol to corresponding ketone while
(R)-alcohol was remained as it is in fermentation broth during sim-
ilar incubation conditions. GC and GC–MS analysis of the assay
extract obtained by incubating corresponding prochiral carbonyl
compounds did not show presence of corresponding reduced
alcohol metabolites. GC and GC–MS analyses of the assay
extract obtained by incubating ( )-lavandulyl acetate (1) with
F. proliferatum did show the presence of the corresponding alde-
hyde metabolite.
Scale-up studies were carried out in shake flasks (100 mL
media) containing ( )-1-phenylethyl acetate (6) as substrate.
Substrate concentration studies carried out using varied sub-
strate concentration (0.2, 0.4, 0.8, 1.2, 2.0 and 2.4 g LÀ1) indicated
that the microorganism could transform (6) in to (R)-(+)-1-pheny-
lethanol (6a).
1. Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Sturmer, R.;
Zelinski, T. Angew. Chem., Int. Ed. 2004, 43, 788–824.
2. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Nature
2001, 409, 258–268.
3. Tewari, Y. B.; Vanderah, D. J.; Rozzell, J. D. J. Mol. Catal. B: Enzym. 2003, 21, 123–
131.
4. Patel, J. M. J. Mol. Catal. B: Enzym. 2009, 61, 123–128.
5. Patel, R. N. Curr. Opin. Biotechnol. 2001, 12, 587–604.
6. de Alfonso, I.; Hernandez, E.; Velazquez, Y.; Navarro, I.; Primo, J. J. Agric. Food
Chem. 2012, 60, 11959–11964.
7. Furstner, A.; Albert, M.; Mlynarski, J.; Matheu, M.; DeClercq, E. J. Am. Chem. Soc.
2003, 125, 13132–13142.
8. Kondo, K.; Kan, K.; Tanada, Y.; Bando, M.; Shinohara, T.; Kurimura, M.; Ogawa,
H.; Nakamura, S.; Hirano, T.; Yamamura, Y.; Kido, M.; Mori, T.; Tominaga, M. J.
Med. Chem. 2002, 45, 3805–3808.
9. Cross, H.; Marriott, R.; Grogan, G. Biotechnol. Lett. 2004, 26, 457–460.
10. Danda, H.; Nagatomi, T.; Maehara, A.; Umemura, T. Tetrahedron 1991, 47,
8701–8716.
11. de los Rios, A. P.; van Rantwijk, F.; Sheldon, R. A. Green Chem. 2012, 14, 1584–
1588.
12. Ferreira, H. V.; Rocha, L. C.; Severino, R. P.; Porto, A. L. M. Molecules 2012, 17,
8955–8967.
13. Filice, M.; Romero, O.; Abian, O.; de las Rivas, B.; Palomo, J. M. RSC Adv. 2014, 4,
49115–49122.
14. Frings, K.; Koch, M.; Hartmeier, W. Enzyme Microb. Technol. 1999, 25, 303–309.
15. Gao, Y.; Zhong, R. T.; Qin, J. H.; Lin, B. C. Chem. Lett. 2009, 38, 262–263.
16. Garcia-Urdiales, E.; Rebolledo, F.; Gotor, V. Tetrahedron: Asymmetry 2000, 11,
1459–1463.
17. Jia, R.; Hu, Y.; Liu, L.; Jiang, L.; Zou, B.; Huang, H. ACS Catal. 2013, 3, 1976–1983.
18. Kim, M. J.; Cho, H. Chem. Commun. 1992, 1411–1413.
19. Laumen, K.; Schneider, M. P. Chem. Commun. 1988, 598–600.
20. Mantovani, S. M.; de Oliveira, L. G.; Marsaioli, A. J. J. Braz. Chem. Soc. 2010, 21,
1484–1489.
Increase in the substrate concentration decreased the level of
metabolite formation as well as enantiomeric excess (ee). Time
course experiments indicate that F. proliferatum could transform
100% of (6) into (6a) at the end of 3 days of incubation period.
The fermentation volume was scaled up to 1.0 L with substrate
concentration 0.4 g LÀ1 34
Purification of the alcohol fraction from
.
1.0 L fermentation medium containing 0.4 g racemic acetate (6)
resulted in the isolation of 0.14 g pure (R)-(+)-1-phenylethanol
(6a) with a yield of 47% and 99.9% ee. Purified (R)-(+)-1-pheny-
lethanol (6a) was further characterized by analytical techniques
such as NMR (1H, 13C) and optical rotation. (R)-1-Phenylethanol:
colorless liquid; [a]
25 = +36.2. 1H NMR (CDCl3, 200 MHz) d: 7.25
D
21. Merabet-Khelassi, M.; Houiene, Z.; Aribi-Zouioueche, L.; Riant, O. Tetrahedron:
Asymmetry 2012, 23, 828–833.
22. Musidlowska-Persson, A.; Bornscheuer, U. T. Tetrahedron: Asymmetry 2003, 14,
1341–1344.
(5H, m, Ar), 4.82 (1H, m, H-1), 1.43 (3H, d, J = 6.4, H-2); 13C NMR
(CDCl3, 50 MHz) d: 145.78, 128.39, 127.62, 125.33 70.25, 25.05.