3546 J. Phys. Chem. B, Vol. 101, No. 18, 1997
Son and Gland
(10) Tsai, M.-C.; Friend, C. M.; Muetterties, E. L. J. Am. Chem. Soc.
1982, 104, 2539.
(11) Muetterties, E. L. Pure Appl. Chem. 1982, 54, 83.
(12) (a) Demuth, J. E.; Ibach, H.; Lehwald, S. Phys. ReV. Lett. 1978,
40, 1044. (b) Lehwald, S.; Ibach, H. Surf. Sci. 1979, 89, 425. (c) Land, D.
P.; Erley, W.; Ibach, H. Surf. Sci. 1993, 289, 237.
(ii) the produced cyclohexyl is hydrogenated primarily by
surface hydrogen to form cyclohexane.
Summary and Conclusions
Hydrogenation of cyclohexene is observed on the Ni(100)
surface at 100 K during the exposure to gas phase atomic
hydrogen. The formation of a cyclohexyl intermediate is
indicated by both vibrational spectroscopy and isotope labeling
experiments. The appearance of ring deformation modes and
Ni-C stretching mode in the vibrational spectrum suggests
cyclohexyl formation during atomic hydrogen exposure. Isotope
experiments indicate that this cyclohexyl intermediate is singly
hydrogenated to cyclohexane primarily by the surface hydrogen
during subsequent TPR experiments. Hydrogen addition is the
dominant process for both monolayer and multilayer cyclohex-
ene during atomic hydrogen exposures. The absence of
desorbing n-alkane products indicates that C-C bond activation
is not an important process during reaction of gas phase atomic
hydrogen with adsorbed cyclohexene. Hydrogen abstraction is
significant with only multilayer cyclohexene. Surface hydrogen
does not react with coadsorbed cyclohexene on the Ni(100)
surface. Molecular desorption is the dominant thermal process
for cyclohexene in the presence of coadsorbed hydrogen.
Vibrational spectroscopy indicates that π-bonded cyclohexene
with the CdC bond parallel to the surface is the dominant
surface species in the presence of coadsorbed surface hydrogen.
In contrast, di-σ-bonded cyclohexene is the dominant species
in the absence of coadsorbed hydrogen. In the absence of
coadsorbed hydrogen, dehydrogenation of the adsorbed cyclo-
hexene results in benzene formation with increasing temperature.
Adsorbed benzene formed by dehydrogenation has been identi-
fied using vibrational spectroscopy after heating to 390 K in
the absence of hydrogen. A fraction of this benzene desorbs at
440 K, with the remainder being dehydrogenated with
increasing temperature.
(13) Hoffman, F. M.; Felter, T. E.; Thiel, P. A.; Weinberg, W. H. Surf.
Sci. 1983, 130, 173.
(14) (a) Chesters, M. A.; Parker, S. F.; Raval, R. J. Electron. Relat.
Phenom. 1986, 39, 155. (b) Raval, R.; Parker, S. F.; Chesters, M. A. Surf.
Sci. 1993, 289, 227.
(15) (a) Raval, R.; Chesters, M. A. Surf. Sci. 1989, 219, L505. (b) Raval,
R.; Pemble, M. E.; Chesters, M. A. Surf. Sci. 1989, 210, 187.
(16) Bussell, M. E.; Henn, F. C.; Campbell, C. T. J. Phys. Chem. 1992,
96, 5978.
(17) Son, K.-A.; Mavrikakis, M.; Gland, J. L. J. Phys. Chem. 1995, 99,
6270.
(18) Teplyakov, A. T.; Bent, B. E. J. Chem. Soc., Faraday Trans. 1995,
91, 3645.
(19) Davis, S. M.; Somorjai, G. A. J. Catal. 1980, 65, 78.
(20) Boudart, M.; McConica, C. M. J. Catal. 1989, 117, 33.
(21) Okamoto, Y.; Nitta, Y.; Imanaka, T.; Teranish, S. J. Catal. 1980,
64, 397.
(22) O’Rear, D. J.; Loffler, D. G.; Boudart, M. J. Catal. 1985, 94, 225.
(23) Gonzo, E. E.; Boudart, M. J. Catal. 1978, 52, 462.
(24) Temperature Programmed Analysis Package, Hunt Scientific, Box
4272, Camp Connell, CA 95223.
(25) Blass, P. M.; Akhter, S.; White, J. M. Surf. Sci. 1987, 191, 406.
(26) (a) Henn, F. C.; Diaz, A. L.; Bussell, M. E.; Hugenschmidt, M.
B.; Domagala, M. E.; Campbell, C. T. J. Phys. Chem. 1992, 96, 5965. (b)
Neto, N.; Dilauro, C.; Castellucci, E.; Califano, S. Spectrochim. Acta. A
1967, 23, 1763.
(27) Pouchert, C. J. The Aldrich Library of FT-IR Spectra, 1st ed.;
Aldrich Chemical Co.: Milwaukee, WI, 1985.
(28) Bertolini, J. C.; Dalmai-imelik, G.; Rousseau, J. Surf. Sci. 1978,
78, 577.
(29) Lehwald, S.; Ibach, H.; Demuth, J. E. Surf. Sci. 1977, 67, 478.
(30) Daley, S. P.; Utz, A. L.; Trautman, T. R.; Ceyer, S. T. J. Am. Chem.
Soc. 1994, 116, 6001.
(31) For the estimation of cyclohexane yield, fragmentation patterns of
desorbing cyclohexene and cyclohexane were obtained with 30 eV of
ionization energy. Based on these fragmentation patterns, the 56 amu
fragment corresponds to 20% of the total cyclohexane fragments and the
67 amu fragment is 26% of the total cyclohexene fragments. Ionization
efficiencies of the two molecules were assumed to be the same for the yield
estimation.
References and Notes
(32) The activation energy for hydrogen abstraction from cyclohexane
in gas phase is 9 kcal/mol (Grief, D.; Oldershaw, G. A. J. Chem. Soc.,
Faraday Trans. 1 1982, 78, 1189). The activation energy for hydrogen
abstraction from cyclohexene is expected to be larger than this value.
(33) This estimate is based on the standard formation enthalpies of di-
σ-bonded cyclohexene (-18 kcal/mol) and tri-σ-bonded cycloallylic radical
(-41 kcal/mol) on the Pt(111) surface. Standard formation enthalpies of
these two species were provided by Bruce Koel.
(1) (a) Jones, W. E.; Macknight, S. D.; Teng, L. Chem. ReV. 1973, 73,
407 and references therein. (b) Harris, G. W.; Pitts, J. N., Jr. J. Chem. Phys.
1982, 77, 3994. (c) Johnston, G. W.; Satyapal, S.; Bersohn, R.; Katz, B. J.
Chem. Phys. 1990, 92, 206.
(2) Kelley, R. D.; Klein, R.; Scheer, M. D. J. Phys. Chem. 1970, 74,
4301 and references therein.
(3) Klein, R.; Scheer, M. D.; Kelley, R. D. J. Phys. Chem. 1964, 68,
598.
(4) Watkins, K. W.; Moser, H. C. J. Phys. Chem. 1965, 69, 1040.
(5) Klein, R.; Scheer, M. D. J. Phys. Chem. 1962, 66, 2677.
(6) (a) Jenks, C. J.; Xi, M.; Yang, M. X.; Bent, B. E. J. Phys. Chem.
1994, 98, 2152. (b) Yang, M. X.; Bent, B. E. J. Phys. Chem. 1996, 100,
822.
(34) Lutterloh, C.; Schenk, A.; Biener, J.; Winter, B.; Kuppers, J. Surf.
Sci. 1994, 316, L1039.
(35) Sverdlov, L. M.; Kovner, M. A.; Krainov, E. P. Vibrational Spectra
of Polyatomic Molecules; Wiley: New York, 1974.
(36) Shimanouchi, T. Tables of Molecular Vibrational Frequencies;
Consol. Vol. II, NSRDS-NBS39, 1972; J. Phys. Chem. Ref. Data 1977, 6,
993.
(7) Xi, M.; Bent, B. E. J. Vac. Sci. Technol. B, 1992 10 (6), 2440.
(8) Xi, M.; Bent, B. E. J. Phys. Chem. 1993, 97, 4167.
(9) (a) Son, K.-A.; Gland, J. L. J. Am. Chem. Soc. 1996, 118, 10505.
(b) Son, K. -A.; Gland, J. L. Submitted for publication.
(37) Shimanouchi, T. Tables of Molecular Vibrational Frequencies;
Consol. Vol. I, NSRDS-NBS39, 1972.