A R T I C L E S
Arai et al.
anilines,11 RLi,12 and other carbon-centered nucleophiles have
been described. As for aziridines, while several protocols for
the nonstereoselective ring-opening reaction have been reported,
the catalytic enantioselective version of the reaction has not been
well explored. In particular, use of meso-aziridines as substrates
has been little investigated. Although examples of ring-opening
3e
Scheme 1. Desymmetrization of meso-Epoxides and Aziridines by
Ring Opening under the Influence of a Chiral Catalyst
1
3
14
reactions of aziridines using TMSCN, MeMgBr, and
1
5
TMSN3 have been described, to the best of our knowledge,
no methods for desymmetrisation of meso-aziridines using less
reactive nucleophiles such as anilines have been reported.
Needless to say, the introduction of such a catalyst system would
be of great synthetic interest. Furthermore, the invention of a
catalyst system which promotes not only the efficient and highly
stereoselective ring opening of meso-epoxides but also of meso-
aziridines, with aniline nucleophiles, would enhance yet further
the utility of Lewis acid catalysis.
presence in a diverse variety of natural products and resin
precursors, their inherent reactivity toward ring opening with a
wide range of nucleophiles to give products with, in the case
of nonterminal epoxides and aziridines, contiguous chiral centers
makes them very valuable synthetic intermediates. The higher
reactivity of epoxides in particular has led to their wide use in
synthesis and has been fueled by the fact that the ring-opening
reaction of meso-epoxides proceeds smoothly with a range of
nucleophiles such as with a range of mild Lewis acid catalysts
to give chiral products.4 Of greater synthetic interest is the
use of a chiral catalyst in the ring-opening reaction which leads
to the formation of chiral nonracemic products via desymme-
trization of the epoxide or aziridine (Scheme 1).
In recent years, our group has reported the use of complexes
of transition metals and 2,2′-binapthol (BINOL) derivatives as
catalysts for a variety of transformations such as enantioselective
-6
1
6
17
aldol reactions, hetero-Diels-Alder reactions, Mannich type
reactions, Strecker-type reactions, the allylation of imines,20
and [3+2] cycloaddition reactions. In this context, and as part
18
19
In the case of epoxides, several catalyst systems that mediate
the desymmetrative process using a broad array of metals and
21
22
of our ongoing interest in meso-epoxide chemistry, we recently
7
8
9
10
nucleophiles including TMSCN, thiols, TMSN3, alcohols,
reported the invention of the first highly enantioselective Lewis
acid catalyst system which shows remarkable selectivity in the
(
3) For recent monographs on the chemistry of expoxides and aziridines see
(a) Rao, A. S. ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 7, p 357. (b) Jacobsen,
E. N.; Wu, M. H. ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Heidelberg, Germany,
(11) (a) Hou, X. -L.; Wu, J.; Dai, L. -X.; Xia, L. -J.; Tang M. -H. Tetrahedron:
Assymmetry 1998, 9, 1747. (b) Sekine, A.; Ohshima, T.; Shibasaki, M.
Tetrahedron 2002, 58, 75. (c) Schneider, C.; Sreekanth, A. R.; Mai, E.
Angew. Chem., Int. Ed. 2004, 43, 5691. (d) Carr e´ e, F.; Gil, R.; Collin, J.
Tetrahedron Lett. 2004, 45, 7749. (e) Carr e´ e, F.; Gil, R.; Collin, J. Org.
Lett. 2005, 7, 1023. (f) Kureshy, R. I.; Singh, S.; Khan, N. H.; Abdi, S. H.
R.; Suresh, E.; Jasra, R. V. Eur. J. Org. Chem. 2006, 1303. (g) Kureshy,
R. I.; Singh, S.; Khan, N. H.; Abdi, S. H. R.; Agrawal, S.; Mayani, V. J.;
Jasra, R. V. Tetrahedron Lett. 2006, 47, 5277. (h) Mai, E. Schneider, C.
Chem. Eur. J. 2007, 2729.
1
1
999; Vol. III, Chapter 35. (c) McCoull, W.; Davis, F. A. Synthesis 2000,
347. (d) Sweeny, J. B. Chem. Soc. ReV. 2002, 31, 247. (e) Pineschi, M.
Eur. J. Org. Chem. 2006, 4979.
(
4) (a) Chini, M.; Crotti, P.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron
Lett. 1994, 35, 433. (b) Meguro, M.; Asao, N.; Yamamoto, Y. J. Chem.
Soc., Chem. Commun. 1994, 2597. (c) Hou, X. -L.; Wu, J.; Dai, L. -J.;
Tang, M.-H. Tetrahedron: Asymmetry 1998, 9, 1747. (d) Sekar, G.; Singh,
V. K. J. Org. Chem. 1999, 64, 287. (e) Sagawa, S.; Abe, H.; Hase, Y.;
Inabe, T. J. Org. Chem. 1999, 64, 4962.
(12) (a) Alexakis, A.; Vranken, E.; Mangeney, P. Synlett 1998, 11165. (b)
Vranken, E.; Alexakis, A.; Mangeney, P. Eur. J. Org. Chem. 2005, 1354.
(13) Mita, T.; Fujimori, I.; Wada, R.; Wen, J.; Kanai, M.; Shibasaki, M. J. Am.
Chem. Soc. 2005, 127, 11252.
(
5) (a) Das, U.; Crousse, B.; Kesavan, V.; Bonnet-Dolpon, D.; B e´ gu e´ , J. P. J.
Org. Chem. 2000, 65, 6749. (b) Chandrasekhar, S.; Ramachandar, T.; Jaya
Prakesh, S. Synthesis 2000, 1817. (c) Rajendder Reddy, L.; Arjun Reddy,
M.; Bhanumanti, N.; Rama Rao, K. New J. Chem. 2001, 25, 221. (d)
Rajendder Reddy, L.; Arjun Reddy, M.; Bhanumanti, N.; Rama Rao, K.
Synthesis 2001, 831. (e) Raghavendra Swamy, N.; Kondaji, G.; Nagaiah,
K. Synth. Commun. 2002, 32, 2307. (f) Ollevier, T.; Lavie-Compin, G.
Tetrahedron Lett. 2002, 43, 7891. (g) Cossy, J.; Bellosta, V.; Hamoir, C.;
Desmurs, J. R. Tetrahedron Lett. 2002, 43, 7083. (h) Sekine, A.; Oshima,
T.; Shibasaki, M. Tetrahedron 2002, 58. 75. (i) Dur a´ n Pach o´ n, L.; Gamez,
P.; van Brussel, J. J. M.; Reedijk, J. Tetrahedron Lett. 2003, 44, 6025. (j)
Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett. 2003, 44, 8315. (k)
Zhao, P. Q.; Xu, L. W.; Xia, C. G. Synlett 2004, 846. (l) Ollevier, T.;
Lavie-Compin, G. Tetrahedron Lett. 2004, 45, 49. (m) Placzek, A. T.;
Donelson, J. L.; Trivedi, R.; Gibbs, R. A.; De, S. K. Tetrahedron Lett.
(14) Muller, P.; Nury, P. Org. Lett. 1999, 1, 439.
(15) (a) Li, Z.; Fernandez, M.; Jacobsen, E. N. Org. Lett. 1999, 1, 1611. (b)
Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2006, 128, 6312.
(16) (a) Ishitani, H.; Yamashita, Y.; Shimizu, H.; Kobayashi, S. J. Am. Chem.
Soc. 2000, 122, 5403. (b) Yamashita, Y.; Ishitani, H.; Shimizu, H.;
Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 3292. (c) Kobayashi, S.; Saito,
S.; Ueno, M.; Yamashita, Y. Chem. Commun. 2003, 2016. (d) Kobayashi,
J.; Nakamura, M.; Mori, Y.; Yamashita, Y.; Kobayashi, S. J. Am. Chem.
Soc. 2004, 126, 9192.
(17) (a) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed. 1998,
37, 979. (b) Kobayashi, S.; Kusakabe, K. -I.; Komiyama, S.; Ishitani, H. J.
Org. Chem. 1999, 64, 4220. (c) Kobayashi, S.; Kusakabe, K. -I.; Ishitani,
H. Org. Lett. 2000, 2, 1225. (d) Yamashita, Y.; Saito, S.; Ishitani, H.;
Kobayashi, S. Org. Lett. 2002, 4, 1221. (e) Kobayashi, S.; Shimizu, H.;
Yamashita, Y.; Ishitani, H.; Kobayashi, J. J. Am. Chem. Soc. 2002, 124,
13678. (f) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem.
Soc. 2003, 125, 3793. (g) Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc.
2004, 126, 11279. (h) Kobayashi, S.; Ueno, M.; Saito, S.; Mizuki, Y.;
Ishitani, H.; Yamashita, Y. Proc. Natl. Acad. Sci. 2004, 101, 5476. (i)
Yamashita, Y.; Mizuki, Y.; Kobayashi, S. Tetrahedron Lett. 2005, 46, 1803.
(18) (a) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119,
7153. (b) Ishitani, H.; Komiyama, S.; Kobayashi, S. Angew. Chem., Int.
Ed. 1998, 37, 3186. (c) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem.
Soc. 1998, 120, 431. (d) Kobayashi, S.; Hasegawa, Y.; Ishitani, H. Chem.
Lett. 1998, 1131. (e) Ishitani, H.; Kitazawa, T.; Kobayashi, S. Tetrahedron
Lett. 1999, 40, 2161. (f) Ishitani, H.; Ueno, M. Kobayashi, S. J. Am. Chem.
Soc. 2000, 122, 8180. (g) Kobayashi, S.; Kobayashi, J.; Ishitani, H.; Ueno,
M. Chem. Eur. J. 2002, 8, 4185.
(19) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem.
Soc. 2000, 122, 762.
(20) Gastner, T.; Ishitani, H.; Akiyama, R.; Kobayashi, S. Angew. Chem., Int.
Ed. 2001, 40, 1896.
(21) (a) Kobayashi, S.; Shimizu, H.; Yamashita, Y.; Ishitani, H.; Kobayashi, J.
J. Am. Chem. Soc. 2002, 124, 13678. (b) Yamashita, Y.; Kobayashi, S. J.
Am. Chem. Soc. 2004, 126, 11279.
(22) (a) Azoulay, S.; Manabe, K.; Kobayashi, S. Org. Lett. 2005, 7, 4593. (b)
Ogawa, C.; Azoulay, S.; Kobayashi, S. Heterocycles 2005, 66, 201. (c)
Boudou, M.; Ogawa, C.; Kobayashi, S. AdV. Synth. Catal. 2006, 348, 2585.
2
005, 46, 9029. (n) Kamal, A.; Ramu, R.; Azhar, M. A.; Khanna, G. B. R.
Tetrahedron Lett. 2005, 46, 2675. (o) Wu, J.; Xia, H. -G. Green Chem.
005, 7, 708.
6) (a) Das, B.; Krishnaiah, M.; Venkateswarlu, K. Tetrahedron Lett. 2006,
7, 6027. (b) Huang, J.; O’Brien, P. Synthesis 2006, 425. (c) Bonollo, S.;
2
(
4
Fringuelli, F.; Pizzo, F.; Vaccaro, L. Green Chem. 2006, 8, 960. (d)
Schneider, C. Synthesis 2006, 3919. (t) Torregrosa, R.; Pastor, I. M.; Yus,
M. Tetrahedron 2006, 63, 469.
(
7) (a) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P.; Snapper,
M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. Engl. 1996, 35, 1668. (b)
Shimizu, K. D.; Cole, B. M.; Krueger, C. A.; Kuntz, K. W.; Snapper, M.
L.; Hoveyda, A. H. Angew.Chem., Int. Ed. Engl. 1997, 36, 1704. (c) Schaus,
S. E.; Jacobsen, E. N. Org. Lett. 2000, 2, 1001. (d) Yamasaki, S.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 1256. (e) Zhu, C.; Yuan,
F.; Gu, W.; Pan, Y. Chem. Commun. 2003, 692. (f) Pakulski, Z.;
Pietrusiewiscz, K. M. Tetrahedron: Asymmetry 2004, 15, 41.
(
8) Iida, T.; Yamamoto, N.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1997,
1
19, 4783.
(
9) Mart ´ı nez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am.
Chem. Soc. 1995, 117, 5897. (b) Leighton, J. L.; Jacobsen, E. N. J. Org.
Chem. 1996, 61, 389.
(
10) (a) Iida, T.; Yamamoto, N.; Matsunaga, S.; Woo, H. -G.; Shibasaki, M.
Angew. Chem., Int. Ed. 1998, 37, 2223. (b) Matsunaga, S.; Das, J.; Roels,
J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. J.
Am. Chem. Soc. 2000, 122, 2252. (c) Ready, J. M.; Jacobsen, E. N. J. Am.
Chem. Soc. 2001, 123, 2687.
8104 J. AM. CHEM. SOC.
9
VOL. 129, NO. 26, 2007