Journal of the American Chemical Society
REFERENCES
ARTICLE
’
(20) Twigg, M. V.; Spencer, M. S. Appl. Catal., A 2001, 212, 161–174.
(
21) Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. J. Am. Chem. Soc.
008, 130, 1402–1414.
22) Sasaki, M.; Goto, K.; Tajima, K.; Adschiri, T.; Arai, K. Green
Chem. 2002, 4, 285–287.
pub/oil_gas/natural_gas/analysis_publications/ngpipeline/index.html.
24) A referee has suggested that, under hydrogenating conditions,
(1) Regalbuto, J. R. Science 2009, 325, 822–824.
2
(2) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044–
(
4098.
(
3) (a) Suganuma, S.; Nakajim, K.; Kitano, M; Yamaguchi, D.; Kato,
(
H.; Hayashi, S.; Hara, M. J. Am. Chem. Soc. 2008, 130, 12787–12793. (b)
Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979–1985. (c)
Toor, S. S.; Rosendahl, L.; Rudolf, A. Energy 2011, 36, 2328–2342.
(
monosaccharides could be converted to sugar alcohols that would not be
seen by gas chromatographic techniques. The absence of any evapora-
tion residue from the liquid product fractions when glucose or cellulose
components are used as substrates suggests that the unimolecular
dehydration and retro-aldol reactions in sc-MeOH are rapid relative to
the hydrogenation of glucose and related precursors. On the other hand,
hydrogenation of the resulting unsaturated species, precursors to
intractable chars, must, in turn, be rapid relative to rate-limiting
solubilization of biomass solids given that nonvolatile organics are at
most a very small fraction of the products.
(
4) (a) Ji, N.; Zhang, T.; Zheng, M. Y.; Wang, A.; Wang, H.; Wang,
X.; Chen, J. G. Angew. Chem., Int. Ed. 2008, 47, 8510–8513. (b) Pang, J.
F.; Zheng, M. Y.; Wang, A. Q.; Zhang, T. Ind. Eng. Chem. Res. 2011,
5
0, 6601–6608.
5) vom Stein, T.; Grande, P.; Sibilla, F.; Commandeur, U.; Fischer,
R.; Leitner, W.; de Maria, D. Green Chem. 2010, 12, 1844–1849.
6) Huber, G. W.; Shabaker, J. W.; Dumesic, J. A. Science 2003,
(
(
3
2
00, 2075–2077. (b) Rinaldi, R.; Schueth, F. ChemSusChem 2009,
, 1096–1107. (c) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.;
Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed.
010, 49, 5510–5514.
7) (a) Mehdi, H.; Fabos, V.; Tuba, R.; Bodor, A.; Mika, L.; Horvath,
(25) Klass, D. L. Biomass for Renewable Energy, Fuels, and Chemicals;
2
Academic Press; San Diego, CA, 1998; pp 271ꢀ326.
(
I. T. Top. Catal. 2008, 48, 49–54. (b) Hanson, S. K.; Baker, R. T.;
Gordon, J. C.; Scott, B. L; Sutton, A. D.; Thorn, D. L. J. Am. Chem. Soc.
2
009, 130, 428–429. (c) Palkovits, R. Angew. Chem., Int. Ed. 2010,
49, 4336–4338.
(8) (a) Yan, N.; Zhao, C.; Dyson, P. J.; Wang, C.; Liu, L.; Kou, Y.
ChemSusChem 2008, 1, 626–629. (b) Hanson, S. K.; Baker, R. T.;
Gordon, J. C.; Scott, B. L; Thorn, D. L. Inorg. Chem. 2010,
49, 5611–5618. (c) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.;
Weckhuysen, B. M. Chem. Rev. 2010, 110, 3552–3599. (d) Nichols,
J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2
010, 132, 12554–12555.
9) (a) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A.
(
Angew. Chem., Int. Ed. 2009, 48, 3987–3990. (b) Calvo-Flores, F. G.;
Dobado, J. A. ChemSusChem 2010, 3, 1227–1235.
0
(
10) Milne, T. A.; Evans, R. J. Abatzoglou, N.Biomass Gasifier Tars:
Their Nature, Formation and Conversion; Report No. NREL/TP-570-
5357; National Renewable Energy Laboratory: Golden, CO, 1998;
http://www.osti.gov/bridge.
2
(
11) Willems, P. A. Science 2009, 325, 707–708.
(12) Macala, G. M.; Matson, T. D.; Johnson, C. L.; Lewis, R. S.;
Iretskii, A. V.; Ford, P. C. ChemSusChem 2009, 2, 215–217.
13) Barta, K.; Matson, T. D.; Fettig, M. L.; Scott, S. L.; Iretskii, A. V;
Ford, P. C. Green Chem. 2010, 12, 1640–1647.
14) Operationally, the HAE are defined as those eluting during
(
(
the first 10.3 min including 1-hexanol (10.26 min) of the GCꢀFID
program using the Agilent Gas Chromatograph described in the
Experimental Section. Major peaks were confirmed by comparison
to authentic samples. Similarly, CAE are defined as those eluting
after 10.3 min and correspond to materials of the type identified by
GCꢀMS experiments as being formed from lignin precursors (ref 13).
Analyses using the GCꢀFID program of Shimadzu GC (see Experi-
mental Section) gave very similar product patterns but with longer
retention times.
(
15) (a) Comparable results were obtained with cellulose when the
Cu20-PMO was replaced by a Cu/Zn/Al metal oxide catalyst (100 mg)
with 27/53/20 molar ratio (Cu/ZnO/Al ), prepared according to
2 3
O
literature procedures (ref 15b) and known to be active for methanol
reforming and the water gas shift. (b) Herman, R. G.; Klier, K.;
Simmons, G. W.; Finn, B. P.; Bulko, J.l B.; Kobylinski, T. P. J. Catal.
1
1
1
979, 56, 407–429.
16) Misra, M. K.; Ragland, K. W.; Baker, A. J. Biomass Bioenergy
993, 4, 103–116.
17) Bradbury, A. G. W.; Sakai, Y.; Shafizadeh, F. J. Appl. Polym. Sci.
979, 23, 3271–3280.
(
(
(18) Ishikawa, Y.; Saka, S. Cellulose 2001, 8, 189–195.
(19) Sunggyu, L. Methanol Synthesis Technology; CRC Press: Boca
Raton, FL, 1990.
1
4097
dx.doi.org/10.1021/ja205436c |J. Am. Chem. Soc. 2011, 133, 14090–14097