Organometallics
Article
(40) Huff, C. A.; Sanford, M. S. Catalytic CO2 Hydrogenation to
Formate by a Ruthenium Pincer Complex. ACS Catal. 2013, 3, 2412−
2416.
(56) Gusev, D. G. Rethinking the Dehydrogenative Amide Synthesis.
ACS Catal. 2017, 7, 6656−6662.
(57) Hasanayn, F.; Morris, R. H. Symmetry Aspects of H2 Splitting
by Five-Coordinate d6 Ruthenium Amides, and Calculations on
Acetophenone Hydrogenation, Ruthenium Alkoxide Formation, and
Subsequent Hydrogenolysis in a Model trans-Ru(H)2(diamine)-
(diphosphine) System. Inorg. Chem. 2012, 51, 10808−10818.
(58) Hamilton, R. J.; Leong, C. G.; Bigam, G.; Miskolzie, M.;
Bergens, S. H. A Ruthenium-Dihydrogen Putative Intermediate in
Ketone Hydrogenation. J. Am. Chem. Soc. 2005, 127, 4152−4153.
(59) Hamilton, R. J.; Bergens, S. H. An Unexpected Possible Role of
Base in Asymmetric Catalytic Hydrogenations of Ketones. Synthesis
and Characterization of Several Key Catalytic Intermediates. J. Am.
Chem. Soc. 2006, 128, 13700−13701.
(41) Standard Thermodynamic Properties of Chemical Substances.
In CRC Handbook of Chemistry and Physics, 96th ed.; Haynes, W. M.,
Ed.; CRC Press/Taylor and Francis: Boca Raton, FL, 2016.
(42) Wiberg, K. B.; Crocker, L. S.; Morgan, K. M. Thermochemical
Studies of Carbonyl Compounds. 5. Enthalpies of Reduction of
Carbonyl Groups. J. Am. Chem. Soc. 1991, 113, 3447−3450.
(43) Spasyuk, D.; Gusev, D. G. Acceptorless Dehydrogenative
Coupling of Ethanol and Hydrogenation of Esters and Imines.
Organometallics 2012, 31, 5239−5242.
(44) Blum, O.; Milstein, D. Hydride Elimination from an
Iridium(III) Alkoxide Complex: a Case in which a Vacant cis
Coordination Site is not Required. J. Organomet. Chem. 2000, 593−
594, 479−484.
(60) Hamilton, R. J.; Bergens, S. H. Direct Observations of the
Metal-Ligand Bifunctional Addition Step in an Enantioselective
Ketone Hydrogenation. J. Am. Chem. Soc. 2008, 130, 11979−11987.
(61) Takebayashi, S.; Bergens, S. H. Facile Bifunctional Addition of
Lactones and Esters at Low Temperatures. The First Intermediates in
Lactone/Ester Hydrogenations. Organometallics 2009, 28, 2349−
2351.
(62) Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H.
Experimental Investigations of a Partial Ru-O Bond during the Metal-
Ligand Bifunctional Addition in Noyori-Type Enantioselective
Ketone Hydrogenation. J. Am. Chem. Soc. 2011, 133, 9666−9669.
(63) Baratta, W.; Chelucci, G.; Gladiali, S.; Siega, K.; Toniutti, M.;
Zanette, M.; Zangrando, E.; Rigo, P. Ruthenium(II) Terdentate CNN
Complexes: Superlative Catalysts for the Hydrogen-Transfer Reduc-
tion of Ketones by Reversible Insertion of a Carbonyl Group into the
Ru-H Bond. Angew. Chem., Int. Ed. 2005, 44, 6214−6219.
(64) Dub, P. A.; Henson, N. J.; Martin, R. L.; Gordon, J. C.
Unravelling the Mechanism of the Asymmetric Hydrogenation of
Acetophenone by [RuX2(diphosphine) (1, 2-diamine)] Catalysts. J.
Am. Chem. Soc. 2014, 136, 3505−3521.
(65) Dub, P. A.; Scott, B. L.; Gordon, J. C. Why Does Alkylation of
the N-H Functionality within M/NH Bifunctional Noyori-Type
Catalysts Lead to Turnover? J. Am. Chem. Soc. 2017, 139, 1245−1260.
(66) Spasyuk, D.; Smith, S.; Gusev, D. G. Replacing Phosphorus
with Sulfur for the Efficient Hydrogenation of Esters. Angew. Chem.,
Int. Ed. 2013, 52, 2538−2542.
(67) Hadzovic, A.; Song, D.; MacLaughlin, C. M.; Morris, R. H. A
Mechanism Displaying Autocatalysis: The Hydrogenation of
Acetophenone Catalyzed by RuH(S-binap)(app) Where app Is the
Amido Ligand Derived from 2-Amino-2-(2-pyridyl)propane. Organo-
metallics 2007, 26, 5987−5999.
(68) Spasyuk, D.; Smith, S.; Gusev, D. G. From Esters to Alcohols
and Back with Ruthenium and Osmium Catalysts. Angew. Chem., Int.
Ed. 2012, 51, 2772−2775.
(69) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson,
G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.;
Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J.
V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.;
Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson,
T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.;
Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.;
Bearpark, M.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V.
N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant,
J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.;
Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma,
K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, revision A.03;
Gaussian, Inc.: Wallingford CT, 2016.
(45) Morello, G. R.; Hopmann, K. H. A Dihydride Mechanism Can
Explain the Intriguing Substrate Selectivity of Iron-PNP-Mediated
Hydrogenation. ACS Catal. 2017, 7, 5847−5855.
(46) Yang, X. Unexpected Direct Reduction Mechanism for
Hydrogenation of Ketones Catalyzed by Iron PNP Pincer Complexes.
Inorg. Chem. 2011, 50, 12836−12843.
(47) Hasanayn, F.; Baroudi, A. Direct H/OR and OR/OR′
Metathesis Pathways in Ester Hydrogenation and Transesterification
by Milstein’s Catalyst. Organometallics 2013, 32, 2493−2496.
(48) Zweifel, T.; Naubron, J.-V.; Buttner, T.; Ott, T.; Grutzmacher,
̈ ̈
H. Ethanol as Hydrogen Donor: Highly Efficient Transfer Hydro-
genations with Rhodium(I) Amides. Angew. Chem., Int. Ed. 2008, 47,
3245−3249.
(49) Morris, S. A.; Gusev, D. G. Rethinking the Claisen−Tishchenko
Reaction. Angew. Chem., Int. Ed. 2017, 56, 6228−6231.
(50) Gusev, D. G.; Spasyuk, D. M. Revised Mechanisms for
Aldehyde Disproportionation and the Related Reactions of the Shvo
Catalyst. ACS Catal. 2018, 8, 6851−6861.
(51) Menashe, N.; Shvo, Y. Catalytic Disproportionation of
Aldehydes with Ruthenium Complexes. Organometallics 1991, 10,
3885−3891.
(52) Zhang and co-workers calculated a concerted process of H2
elimination from 2 to give 1, assisted by a molecule of EtOH.28 The
concertedness of this process might be an artifact of the gas-phase
structure optimization.19,53 Another difference between the calcu-
lations of this paper and those of Zhang and co-workers is the Gibbs
energy of formation of 2 from 1 and H2: −4.7 to −5.9 and + 3.9 kcal/
mol, respectively. The latter value is inconsistent with the observed1,30
quantitative formation of 2 from 1 under 1 atm H2. For systems
related to 1 and 2, where metal−ligand cooperation by aromatiza-
tion−dearomatization was thought to be operative, it was also
suggested that the H2 elimination/addition process could be catalyzed
by water, via a proton transfer shuttle, with 1−2 molecules of the
“adventitious” water being involved.8,9,54,55 This model has not been
considered here because complex 1 is not compatible with water; it
reacts rapidly and quantitatively with 1 equiv of H2O to form
RuH(OH)(CO)[PNN].31 There are no experimental observations of
the catalytic ester hydrogenation/synthesis with 1 being accelerated
by water. Furthermore, should 1 or 2 be heated in a solution
containing H2O together with an alcohol RCH2OH, the likely
outcome would be formation of the carboxylate RuH(RCO2)(CO)
[PNN] and possible catalyst deactivation.39
(53) Dub, P. A.; Gordon, J. C. The Mechanism of Enantioselective
Ketone Reduction with Noyori and Noyori-Ikariya Bifunctional
Catalysts. Dalton Trans. 2016, 45, 6756−6781.
(54) Chen, T.; Li, H.; Qu, S.; Zheng, B.; He, L.; Lai, Z.; Wang, Z.-X.;
Huang, K.-W. Hydrogenation of Esters Catalyzed by Ruthenium PN3-
Pincer Complexes Containing an Aminophosphine Arm. Organo-
metallics 2014, 33, 4152−4155.
(70) Yu, H. S.; He, H.; Truhlar, D. G. MN15-L: A New Local
Exchange-Correlation Functional for Kohn−Sham Density Functional
Theory with Broad Accuracy for Atoms, Molecules, and Solids. J.
Chem. Theory Comput. 2016, 12, 1280−1293.
(55) Iron, M. A.; Ben-Ari, E.; Cohen, R.; Milstein, D. Metal−ligand
Cooperation in the trans Addition of Dihydrogen to a Pincer Ir(I)
Complex: a DFT Study. Dalton Trans. 2009, 9433−9439.
L
Organometallics XXXX, XXX, XXX−XXX