Chemistry Letters Vol.35, No.2 (2006)
187
2nd ed., Verlag Chemie, Weinheim, Germany, 1993. c) R. J.
McKinney, U.S. Patent 4504674, 1985.
a) J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Acc. Chem.
Res. 2001, 34, 191. b) W. Niu, K. M. Draths, J. W. Frost,
Biotechnol. Prog. 2002, 18, 201. c) G. Kiss, Chem. Rev.
PN 5
RCO2
[
Ru ]
CN
4
AN
2
3
AN
AN
CN
2001, 101, 3435.
a) A. Misono, Y. Uchida, M. Hidai, H. Kanai, Chem. Com-
mun. 1967, 357. b) J. D. McClure, R. Owyang, L. H. Slaugh,
J. Organomet. Chem. 1968, 12, 8. c) E. Billig, C. B. Strow,
R. L. Pruett, Chem. Commun. 1968, 1307. d) A. Misono, Y.
Uchida, M. Hidai, I. Inomata, Chem. Commun. 1968, 704.
e) A. Misono, Y. Uchida, M. Hidai, H. Shinohara, Y.
Watanabe, Bull. Chem. Soc. Jpn. 1968, 41, 396. f) W.
Strohmeier, A. Kaiser, J. Organomet. Chem. 1976, 114,
273. g) D. T. Tsou, J. D. Burrington, E. A. Maher, R. K.
Grasselli, J. Mol. Catal. 1985, 30, 219. h) D. T. Tsou, J. D.
Burrington, E. A. Maher, R. K. Grasselli, J. Mol. Catal.
1983, 22, 29. i) A. Fukuoka, T. Nagano, S. Furuta, M.
Yoshizawa, M. Hirano, S. Komiya, Bull. Chem. Soc. Jpn.
1998, 71, 1409.
Ru
H
[
RuH2 ]
[ H-Ru-O CR ]
2
AN
Path a
Path b
protonation
3
β-elimination
1
H
Ru
1
without H2
RCO H
2
NC
H2
hydrogenation
with H2
CN
Scheme 2.
4
5
6
a) Rhone-Poulenc, Neth. Appl. 6603115, 1966; Chem. Abstr.
1
967, 66, 85483. b) H. Shinohara, Y. Watanabe, T. Suzuki,
Jpn. Kokai Tokkyo Koho 24585, 1969; Chem. Abstr. 1970,
2, 42849. c) W. H. Knoth, U.S. Patent 3538133, 1970; Chem.
0
.2
.15
.1
o-PhCO
7
0
0
y = −0.199x + 0.820
Abstr. 1971, 74, 6970. d) G. W. Godin, Ger. Offen 2019907,
1971; Chem. Abstr. 1971, 75, 19734. e) P. F. Todd, Ger. Patent
2,446,641, 1975; Chem. Abstr. 1975, 83, 27639. f) R. K.
Grasselli, J. D. Burrington, F. A. Pesa, H. F. Hardman, Eur.
Pat. Appl. EP 72231, 1983; Chem. Abstr. 1983, 99, 139364.
g) S. Murai, K. Oodan, R. Sugise, M. Shirai, T. Shimakawa,
Jpn. Kokai Tokkyo Koho 09531, 1994; Chem. Abstr. 1994,
m-CN
2
R = 0.946
0
m-Cl
m-MeO
.05
0
H
p-Cl
120, 191146. h) T. Yorisue, S. Kanejima, Jpn. Kokai Tokkyo
m-Me
p-Me
Koho 245539, 1996; Chem. Abstr. 1996, 126, 7712. i) Y.
Suzuki, Y. Kiso, PCT Int. Appl. WO 1531, 1997; Chem.
Abstr. 1997, 126, 157193. j) H. Yasuda, Jpn. Kokai Tokkyo
Koho 03544, 1999; Chem. Abstr. 1999, 130, 168018.
−
0.05
p-MeO
−0.1
K. Kashiwagi, R. Sugise, T. Shimakawa, T. Matsuura, M.
Shirai, F. Kakiuchi, S. Murai, Organometallics 1997, 16,
2233. Previously, we reported some results of lesser produc-
tion of 2-cyanoethyl carboxylate than that of 1,4-dicyanobu-
tene. The production of the equimolar amount of 1,4-dicyano-
butene and 2-cyanoethyl carboxylate was needed for the
mechanism shown in Scheme 2. Therefore, we proposed the
different mechanism previously. But we found subsequently
the regeneration of carboxylic acid and AN from 2-cyanoethyl
carboxylate under the dimerization conditions. This results
make possible to explain the production of 2-cyanoethyl car-
boxylate lesser than that of 1,4-dicyanobutene, thus we pro-
pose the mechanism (Path b) corresponding to that under H2
pressure (Path a) this time. An alternative possibility, which
is shown in Ref. 5, is not shown in Scheme 2 for simplicity.
Further investigation on this reaction is in progress.
3
.4
3.6
3.8
4.0
4.2
4.4
4.6
pKa
Figure 1. Relationship between logðVX=VHÞ and pKa of substi-
ꢂ
tuted benzoic acids at 120 C. : m- and p-substituted benzoic
acid, : o-benzoylbenzoic acid.
supposed that proton-transfer in the protonolysis process is
rate-determining. The small value for the slope (ꢁ0:199) in
the Brꢀnsted relationship suggests that the protonolysis step
has a very early transition state. The deviation of the plot for
o-benzoylbenzoic acid from the fitted line is probably related
to favorable steric factors in the protonation step.
Further investigations on the mechanism, reaction condi-
tions and the catalysts in the acrylonitrile dimerization are in
progress.
E. A. Braude, F. C. Nachod, Determination of Organic
Structures by Physical Methods, Academic Press, New York,
We thank Dr. S. Murai, Professor Emeritus of Osaka Uni-
versity, and Dr. K. Ohkata, Professor of Hiroshima University,
for their valuable discussions and suggestions. We also thank
Dr. Satoshi Kojima for reading the manuscript and making
several helpful suggestions.
1
955, p. 567.
7
8
G. B. Bray, J. E. Doppy, S. R. C. Hughers, J. Chem. Soc. 1957,
265.
The dimer of AN was not formed at all when p-toluene sulfon-
ic acid and trifluoroacetic acid were used as the acid. Phenol
gave the same results as in the case of the absence of hydrogen
and carboxylic acid. The Ru-catalyzed dimerization of AN
in the absence of hydrogen and carboxylic acid proceeded
to afford a small amount of 1,4-dicyanobutadiene 3 as the
major dimer.
References and Notes
1
a) G. W. Parshall S. D. Ittel, Applied Homogeneous Catalysis,
nd ed., Wiley-Interscience, New York, 1992, p. 242. b) K.
Weissermel, H.-J. Arpe, Industrial Organic Chemistry,
2