1976ꢀ
TrinꢀJedsukontornꢀetꢀal.ꢀ/ꢀChineseꢀJournalꢀofꢀCatalysisꢀ37ꢀ(2016)ꢀ1975–1981ꢀ
Nevertheless,ꢀ theꢀ useꢀ ofꢀ bareꢀ TiO
2
ꢀ asꢀ aꢀ photocatalystꢀ stillꢀ
toryꢀ scaleꢀ atꢀ ambientꢀ conditions.ꢀ Onꢀ addition,ꢀ theꢀ reactionꢀ
pathwayꢀ forꢀ glycerolꢀ conversionꢀ viaꢀ TiO ‐inducedꢀ photocata‐
ꢀandꢀO ꢀasꢀanꢀ electronꢀ
gaveꢀ aꢀ slowꢀ rateꢀ ofꢀ glycerolꢀ conversion,ꢀ probablyꢀ dueꢀ toꢀ theꢀ
2
+
recombinationꢀofꢀh ‐e ꢀthatꢀoccurredꢀafterꢀtheꢀchargeꢀsepara‐
lyticꢀ oxidationꢀ inꢀ theꢀ presenceꢀ ofꢀ H
acceptorꢀwasꢀalsoꢀproposed.ꢀ
O
2 2
2
tionꢀwhenꢀTiO ꢀabsorbedꢀlightꢀwithꢀphotonꢀenergyꢀequalꢀtoꢀorꢀ
2
higherꢀthanꢀitsꢀbandꢀgapꢀenergy.ꢀThisꢀcausedꢀaꢀdecreaseꢀinꢀtheꢀ
+
photoinducedꢀh ꢀ[21].ꢀTwoꢀstrategiesꢀthatꢀcanꢀreduceꢀthisꢀre‐
2.ꢀ ꢀ Experimentalꢀ
combinationꢀproblemꢀareꢀtheꢀuseꢀofꢀaꢀmetal‐dopedꢀTiO
catalystꢀ andꢀtheꢀ useꢀofꢀ anꢀelectronꢀaccepter.ꢀ Byꢀusingꢀ aꢀmet‐
al‐dopedꢀTiO ,ꢀitꢀwasꢀreportedꢀthatꢀperoxideꢀisꢀtheꢀmainꢀoxida‐
tionꢀproductꢀoverꢀirradiatedꢀaqueousꢀPt/TiO ꢀunderꢀconditionsꢀ
ofꢀglycerolꢀ photoreformingꢀ fromꢀtwoꢀroutesꢀinvolvingꢀ(1)ꢀtheꢀ
oxidationꢀofꢀsurfaceꢀhydroxylꢀgroupsꢀbyꢀphotogeneratedꢀholesꢀ
andꢀ theꢀ subsequentꢀ dimerizationꢀ ofꢀ theꢀ so‐formedꢀ hydroxylꢀ
radicalsꢀandꢀ(2)ꢀtheꢀconsecutiveꢀreductionꢀofꢀsurface‐trappedꢀ
oxygenꢀbyꢀconductionꢀbandꢀelectronsꢀ[22].ꢀAꢀhighꢀproductionꢀ
rateꢀofꢀtheꢀhydroxylꢀradicalꢀcanꢀenhanceꢀaꢀhighꢀconversionꢀofꢀ
2
ꢀphoto‐
2.1.ꢀ ꢀ Chemicalsꢀandꢀcatalystꢀ
2
2
Allꢀchemicalsꢀusedꢀwereꢀanalyticalꢀgrade,ꢀincludingꢀglycerolꢀ
(GLY,ꢀ99.5%,ꢀQReC),ꢀH ꢀ(30ꢀwt%,ꢀQReC),ꢀO ꢀ(99.5%ꢀPraxair),ꢀ
O
2 2
2
DHAꢀ (98%,ꢀ Merck),ꢀ glycericꢀ acidꢀ (GCA,ꢀ 20ꢀ wt%,ꢀ TCI),ꢀ GCDꢀ
(98%,ꢀ Sigmaꢀ Aldrich),ꢀ glycoricꢀ acidꢀ (GCOA,ꢀ 70ꢀ wt%,ꢀ Ajaxꢀ
Finechem),ꢀ formicꢀ acidꢀ (FMA,ꢀ 98%,ꢀ Merck),ꢀ hydroxypyruvicꢀ
acidꢀ (HPA,ꢀ ≥ꢀ 95%,ꢀ Sigmaꢀ Aldrich),ꢀ andꢀ formaldehydeꢀ (FMD,ꢀ
37%,ꢀMerck).ꢀTheꢀphotocatalystꢀusedꢀwasꢀcommercialꢀanataseꢀ
glycerolꢀ andꢀ productꢀ generation.ꢀ Aꢀ nanotube‐structuredꢀ TiO
2
ꢀ
TiO ꢀ powderꢀ (Sigmaꢀ Aldrich).ꢀ Theꢀ probeꢀ compoundsꢀ usedꢀ toꢀ
2
(
TiNT)ꢀcanꢀenhanceꢀaꢀconversionꢀofꢀglycerolꢀtoꢀH
2
ꢀtoꢀtwiceꢀthatꢀ
monitorꢀ theꢀ generationꢀ ofꢀ theꢀ oxidizingꢀ speciesꢀ wereꢀ pa‐
ra‐chlorobenzoicꢀacidꢀ(pCBA,ꢀSigmaꢀAldrich)ꢀandꢀfurfurylꢀalco‐
holꢀ(FFA,ꢀSigmaꢀAldrich).ꢀ
ofꢀnanoparticleꢀTiO
2
ꢀ(P25).ꢀTheꢀdopingꢀofꢀTiNTꢀwithꢀPtꢀandꢀNꢀ
(
Pt‐N‐TiNT)ꢀcanꢀimproveꢀtheꢀactivityꢀforꢀglycerolꢀconversionꢀupꢀ
toꢀ13ꢀtimesꢀcomparedꢀwithꢀP25ꢀ[23].ꢀTheꢀrateꢀofꢀtheꢀphotore‐
formingꢀofꢀglycerolꢀtoꢀH ꢀandꢀCO ꢀwasꢀincreasedꢀbyꢀaꢀfactorꢀofꢀ
5ꢀ andꢀ 60,ꢀ respectively,ꢀ overꢀ Pt/TiO ꢀ comparedꢀ toꢀ theꢀ TiO ꢀ
2
2
2.2.ꢀ ꢀ Characterizationꢀ
2
2
2
photocatalyst,ꢀ whichꢀ wasꢀ dueꢀ toꢀ theꢀ increasedꢀ separationꢀ ofꢀ
h ‐e ꢀpairsꢀandꢀtheꢀpromotionꢀofꢀtheꢀrateꢀlimitingꢀcathodicꢀhalfꢀ
TheꢀBETꢀsurfaceꢀareaꢀofꢀtheꢀutilizedꢀcommercialꢀTiO
2
ꢀwasꢀ
+
measuredꢀ byꢀ N ꢀ adsorptionꢀ byꢀ theꢀ Brunauer‐Emmett‐Tellerꢀ
2
reactionsꢀinꢀtheꢀpresenceꢀofꢀmetallicꢀPtꢀ[24].ꢀ
(BET)ꢀtechniqueꢀwithꢀaꢀsurfaceꢀareaꢀanalyzerꢀ(Quantachrome,ꢀ
Autosorb‐1).ꢀ Itsꢀ bandꢀ gapꢀ energyꢀ wasꢀ determinedꢀ byꢀ aꢀ
UV‐Visibleꢀ spectrophotometerꢀ (Shimadzꢀ UV‐3600)ꢀ inꢀ theꢀ
wavelengthꢀ rangeꢀ ofꢀ 300–800ꢀ nmꢀ atꢀ roomꢀ temperature.ꢀ Theꢀ
bondingꢀ andꢀ valenceꢀ stateꢀ ofꢀ theꢀ metalsꢀ inꢀ theꢀ photocatalystꢀ
wereꢀdeterminedꢀusingꢀX‐rayꢀphotoelectronꢀspectroscopyꢀ(XPS,ꢀ
Toꢀ enhanceꢀ glycerolꢀ conversion,ꢀ theꢀ secondꢀ strategyꢀ wasꢀ
carriedꢀout.ꢀItꢀ wasꢀreportedꢀthatꢀdifferentꢀtypesꢀofꢀROSꢀ wereꢀ
producedꢀinꢀtheꢀpresenceꢀofꢀdifferentꢀelectronꢀacceptorsꢀasꢀwellꢀ
ꢀ
2 2 2
asꢀtheꢀTiO ꢀphase.ꢀInꢀtheꢀpresenceꢀofꢀH O ,ꢀtheꢀrateꢀofꢀOH for‐
mationꢀ increasedꢀ forꢀ rutileꢀ andꢀ anataseꢀ mixedꢀ withꢀ rutileꢀ ofꢀ
1
0%–20%,ꢀ whileꢀ pureꢀ anataseꢀ exhibitedꢀ anꢀ oppositeꢀ trendꢀ
PHIꢀ5000ꢀVersaProbeꢀIIꢀwithꢀmonochromatedꢀAlꢀK ꢀradiation).ꢀ ꢀ
[25].ꢀ Aꢀ higherꢀ productionꢀ rateꢀ ofꢀ O
2
ꢀ wasꢀ observedꢀ withꢀ theꢀ
TiO
2
ꢀinꢀtheꢀanataseꢀphaseꢀthanꢀthatꢀinꢀtheꢀrutileꢀphase.ꢀHowev‐
2.3.ꢀ ꢀ Glycerolꢀoxidationꢀ
er,ꢀinꢀtheꢀpresenceꢀofꢀO
inꢀtheꢀpresenceꢀofꢀTiO
anataseꢀphase.ꢀTheꢀuseꢀofꢀO
itateꢀtheꢀphotoreformingꢀofꢀglycerolꢀtowardꢀCO
thanꢀ anꢀ un‐metallizedꢀ TiO ,ꢀ whileꢀ theꢀ activityꢀ wasꢀ extremelyꢀ
highꢀ withꢀ theꢀ Pt/TiO
productionꢀofꢀOH ꢀandꢀsingletꢀoxygenꢀ( O
ROSꢀthatꢀcontributeꢀtoꢀphotodegradation,ꢀwasꢀmoreꢀthanꢀoneꢀ
2
,ꢀaꢀlargerꢀquantityꢀofꢀO
2
ꢀwasꢀgeneratedꢀ
2
ꢀinꢀtheꢀrutileꢀphaseꢀcomparedꢀwithꢀtheꢀ
ꢀasꢀanꢀelectronꢀacceptorꢀcouldꢀfacil‐
ꢀandꢀH ꢀmoreꢀ
Theꢀ conversionꢀ ofꢀ commercialꢀ glycerolꢀ gaveꢀ value‐addedꢀ
compoundsꢀ thatꢀ includedꢀ DHA,ꢀ GCA,ꢀ GCD,ꢀ GCOA,ꢀ FMA,ꢀ HPA,ꢀ
andꢀFMD,ꢀandꢀwasꢀcarriedꢀoutꢀinꢀaꢀhollowꢀcylindricalꢀglassꢀre‐
actorꢀhavingꢀaꢀdiameterꢀofꢀ10ꢀcm.ꢀTheꢀreactorꢀwasꢀplacedꢀinꢀtheꢀ
middleꢀofꢀaꢀUV‐protectedꢀboxꢀwithꢀtheꢀdimensionsꢀofꢀ0.68ꢀmꢀ×ꢀ
0.68ꢀ mꢀ ×ꢀ 0.78ꢀ m.ꢀ Aꢀ 120ꢀ Wꢀ UVꢀ highꢀ pressureꢀ mercuryꢀ lampꢀ
(RUVꢀ 533ꢀ BC,ꢀ Holland)ꢀ wasꢀ placedꢀ onꢀ theꢀ roofꢀ ofꢀ theꢀ
UV‐protectedꢀboxꢀasꢀpreviouslyꢀdescribedꢀ[30].ꢀ
2
2
2
2
2
ꢀ photocatalystꢀ [24]. However,ꢀ theꢀ finalꢀ
1
2
),ꢀwhichꢀareꢀtheꢀmainꢀ
orderꢀofꢀmagnitudeꢀhigherꢀthanꢀO
2
.ꢀ[26].ꢀTheꢀimportanceꢀofꢀtheꢀ
OH ꢀ radicalꢀ isꢀ understandableꢀ becauseꢀ ofꢀ itsꢀ highꢀ oxidizingꢀ
Inꢀeachꢀexperiment,ꢀ100ꢀmLꢀofꢀglycerolꢀ(0.3ꢀmol/L)ꢀwasꢀir‐
radiatedꢀwithꢀUVꢀlightꢀhavingꢀtheꢀintensityꢀofꢀ4.7ꢀmW/cm ꢀandꢀ
1
2
power.ꢀHowever,ꢀwithꢀotherꢀROSꢀspeciesꢀsuchꢀasꢀ O
2
ꢀandꢀO
2
,ꢀ
veryꢀlittleꢀworkꢀhasꢀbeenꢀcarriedꢀoutꢀtoꢀunderstandꢀtheirꢀfor‐
withꢀaꢀTiO2ꢀdosageꢀofꢀ3ꢀg/Lꢀforꢀ20ꢀh.ꢀTheꢀsolutionꢀwasꢀagitatedꢀ
continuouslyꢀ byꢀ aꢀ magneticꢀ stirrerꢀ atꢀ 300ꢀ r/minꢀ toꢀ achieveꢀ
completeꢀ mixing.ꢀ Twoꢀ typesꢀ ofꢀ electronꢀ acceptorꢀ includingꢀ
mationꢀinꢀaꢀphotocatayticꢀoxidationꢀsystem.ꢀInꢀaddition,ꢀO
2
ꢀcanꢀ
1
beꢀquicklyꢀconvertedꢀtoꢀ O2ꢀ[26],ꢀresultingꢀinꢀitsꢀlowerꢀconcen‐
1
2
trationꢀinꢀtheꢀ photocatalyticꢀ system.ꢀ O ꢀisꢀaꢀstrongꢀoxidationꢀ
H O
2
2
ꢀandꢀO ꢀwereꢀusedꢀforꢀtheirꢀeffectꢀonꢀglycerolꢀconversionꢀ
2
reagentꢀ forꢀ someꢀ organicꢀ compoundsꢀ [27,28]ꢀ dueꢀ toꢀ itsꢀ highꢀ
quantumꢀyieldꢀ[25].ꢀThisꢀsuggestsꢀthatꢀitꢀisꢀanꢀimportantꢀspe‐
andꢀ productꢀ distribution.ꢀ Theꢀ feedingꢀ procedureꢀ ofꢀ theꢀ twoꢀ
chemicalsꢀwasꢀslightlyꢀdifferentꢀdueꢀtoꢀtheirꢀdifferentꢀchemicalꢀ
ciesꢀforꢀtheꢀphotocatalyicꢀTiO
Inꢀtheꢀpresentꢀstudy,ꢀbothꢀH
tronꢀacceptorsꢀinꢀtheꢀphotocatalyticꢀoxidationꢀofꢀglycerolꢀwithꢀ
nanoparticleꢀTiO .ꢀTheꢀeffectsꢀofꢀtheseꢀelectronꢀacceptorsꢀonꢀtheꢀ
typeꢀofꢀgeneratedꢀROSꢀ(especiallyꢀOH andꢀ O
version,ꢀandꢀproductꢀdistributionꢀwereꢀexploredꢀonꢀtheꢀlabora‐
2
ꢀaqueousꢀsuspensionꢀ[25–29].ꢀ
phases.ꢀTheꢀtotalꢀrequiredꢀvolumeꢀofꢀH
mol/Lꢀandꢀ3.06ꢀmLꢀforꢀ0.3ꢀmol/L)ꢀwasꢀaddedꢀintoꢀtheꢀglycerolꢀ
solutionꢀpriorꢀtoꢀstartingꢀtheꢀreaction,ꢀwhileꢀO ꢀwasꢀfedꢀcontin‐
uouslyꢀatꢀaꢀconstantꢀflowꢀrateꢀofꢀ200ꢀmL/min.ꢀAsꢀtheꢀexperi‐
mentꢀprogressed,ꢀ2ꢀmLꢀsamplesꢀwereꢀcollectedꢀandꢀquenchedꢀ
inꢀanꢀice‐waterꢀtrapꢀatꢀ0ꢀ°Cꢀtoꢀterminateꢀtheꢀreactionꢀandꢀthenꢀ
2
O ꢀ(0.765ꢀmLꢀforꢀ0.075ꢀ
2
2 2
O
ꢀandꢀO ꢀwereꢀusedꢀasꢀelec‐
2
2
2
1
2
),ꢀglycerolꢀcon‐