Engineering and Science University, Shibpur, Howrah 711 103,
West Bengal for recording Raman spectrum of complex 1.
References
1
J. A. Fee and G. J. McClune, Mechanisms of Oxidising Enzymes, ed. T.
P. Singer and R. N. Ondarza, Elsevier, Holland, 1978.
2
3
J. Wilshire and D. T. Sawyer, Acc. Chem. Res., 1979, 12, 105.
H. Nakamura, K. Nakamura and J. Yodoi, Annu. Rev. Immunol., 1997,
1
5, 351.
4
5
B. Halliwell and J. C. Gutteridge, Free radicals in biology and medicine,
Oxford University Press, New York, 1999.
M. Fukuyama, K. Rokutan, T. Sano, H. Miyake, M. Shimada and S.
Tashiro, Cancer Lett., 2005, 221, 97.
D. M. Ziegler, Annu. Rev. Biochem., 1985, 54, 305.
6
7
8
M. J. Jackson, Philos. Trans. R. Soc. London, Ser. B, 2005, 360, 2285.
M. Kemp, Y. M. Go and D. P. Jones, Free Radical Biol. Med., 2008, 44,
9
21.
9
H. Sies, Oxidative Stress, ed. H. Sies, Academic Press, New York, 1985,
p. 1.
1
1
0 M. J. Akers, J. Parenteral Sci. Tech., 1982, 36, 222.
1 G. I. Giles and C. Jacob, Biol. Chem., 2002, 383, 375.
+
Fig. 4 Effect of D
2
O on k
o
. [1] = 0.50 mM, [mercap] = 5.0 mM, [H ] =
12 S. K. Ghosh, S. K. Saha, M. C. Ghosh, R. N Bose, J. W. Reed and E.
◦
0
.030 M, [dipicolinic acid] = 2.0 mM, I = 0.50 M (NaClO
4
), T = 25.0 C.
S. Gould, Inorg. Chem., 1992, 31, 3358.
1
3 S. P. Ghosh, S. K. Saha, R. N. Bose, J. W. Reed, M. C. Ghosh and E. S.
Gould, Inorg. Chem., 1993, 32, 2261.
electroprotic mechanism, presented in the diagram below where 2
is the hydroperoxo analogue of 1.
1
1
1
4 B. Saha, M. Hung and D. M. Stanbury, Inorg. Chem., 2002, 41, 5538.
5 J. Sun and D. M. Stanbury, J. Chem. Soc., Dalton Trans., 2002, 785.
6 M. Hung and D. M. Stanbury, Inorg. Chem., 2005, 44, 3541.
+
Eqn (9) demands the inequality K[H ] ꢀ 1 and hence K ≥
3
1
0 , under the present experimental acidity range (0.01–0.06 M).
17 X. Wang and D. M. Stanbury, Inorg. Chem., 2008, 47, 1224.
18 G. G. Christoph, R. E. Marsh and W. P. Schaefer, Inorg. Chem., 1969,
8, 291.
38
Free superoxide is known to be a strong base; (pK ~ -4.88 )
and have uniquely strong basicity (pK > 33) in aprotic media.
Residual basicity of a coordinated superoxide therefore seems
likely and the ascertained lower limit for K appears feasible. In
support, it has been established earlier that the protonated form of
39
1
9 R. Davies, M. Mori, A. G. Sykes and J. A. Weil, Inorg. Synth., 1982,
2, 206.
1
20 F. Feigl, Spot Tests, Nordeman Publishing Co., 1937, p. 46.
2
2
2
1 I. Granthe, J. Am. Chem. Soc., 1961, 83, 360.
2 J. P. Danehy and V.J. Elia, Anal. Chem., 1972, 44, 1281.
3 O. Folin and J. M. Looney, J. Biol. Chem., 1922, 51, 421.
3
+
the superoxo complexes L(H
2
III
O)MOOH ((L) = (H
2
O)
4
, (NH ) ,
3
4
III 33
or N
compound L (H
4
-macrocycle; M = Cr , Rh ) and a macrocyclic cobalt
24 J. P. Danehy and J. A. Kreuz, J. Am. Chem. Soc., 1961, 83, 1109.
25 M. Mori, J. A. Weil and M. Ishiguro, J. Am. Chem. Soc., 1968, 90, 615.
26 C. G. Barraclough, G. A. Lawrance and P. A. Lay, Inorg. Chem., 1978,
1
2+
2
O)CoOOH (ref. 40) exist and play kinetic roles.
5
-1
Moreover, protonation equilibrium constant K
(
H
= 1.5 ¥ 10 M
1
7, 3317.
◦
independent of temperature at 20–40 C) for the anionic peroxo
2
7 A. B. Hoffman and H. Taube, Inorg. Chem., 1968, 7, 1971.
4
-
complex, Co(CN)
5
OO compounds studied over the range 3 < pH
9. In addition, enhanced basicity of peroxo groups compared
28 M. Mori and J. A. Weil, J. Am. Chem. Soc., 1967, 89, 3732.
29 W. S. Allison, Acc. Chem. Res., 1976, 9, 293.
3
3
41
<
0 P. Nagy and M. T. Ashby, J. Am. Chem. Soc., 2007, 129, 14082.
1 S. Goswami, N. Shaikh, A. Panja and P. Banerjee, Int. J. Chem. Kinet.,
to superoxo is a driving force for the proton movement.
Nevertheless, presumed protonation of 1 did not significantly
affect its UV-vis spectra and no attempt was made to evaluate
its pK from spectral studies. We conclude that in acidic media
2
003, 36, 129.
32 R. N. Zahdeh, R. A. Zaru and H. A. Hodali, Polyhedron, 2007, 26,
3
069.
3
3
3 A. Bakac, C. Shi and O. Pestovsky, Inorg. Chem., 2004, 43, 5416.
4 J. T. Edsall and J. Wyman, Biophysical Chemistry, Academic Press, Inc.,
New York, 1958.
+
H scavenges a good proportion of complex 1 to form kinetically
inactive 1H; residual 1 via an electroprotic path oxidizes a mercapo
derivative (RSH) mainly to the corresponding disulfide and also
to sulfinic acid in the case of cysteine.
3
3
3
3
5 M. Smith and J. March, Advanced Organic Chemistry, Wiley Inter-
science, 6th edn, 2007, p. 360.
6 X. Zhang, N. Zhang, H.-P. Schuchmann and C. von Sonntag, J. Phys.
Chem., 1994, 98, 6541.
7 W. J. Albery and M. H. Davis, J. Chem. Soc., Faraday Trans. 1, 1972,
68, 167.
8 I. B. Afanes’ev, Superoxide Ion: Chemistry and Biological Implications,
Acknowledgements
The work was carried out with the financial assistance from
CSIR (New Delhi) and DST (New Delhi). The award of a JRF
UGC, New Delhi) to R. M. is gratefully acknowledged. We also
CRC Press, 1989, p. 46.
3
4
4
9 D. T. Sawyer and J. S. Valentine, Acc. Chem. Res., 1981, 14, 393.
0 K. Kumar and J. F. Endicott, Inorg. Chem., 1984, 23, 2447.
1 S. A. Mirza, B. Bocquet, C. Robyr, S. Thomi and A.F. Williams, Inorg.
Chem., 1996, 35, 1332.
(
thankfully acknowledge the Department of Chemistry, Bengal
2
696 | Dalton Trans., 2010, 39, 2692–2696
This journal is © The Royal Society of Chemistry 2010