the Province of Styria and BASF AG is gratefully acknowledged.
R. Gaisberger (Graz) and Ciba Speciality Chemicals (Basel) are
thanked for the generous donation of chiral materials.
Silvia M. Glueck, Barbara Larissegger-Schnell, Katrin Csar,
Wolfgang Kroutil and Kurt Faber*
Department of Chemistry, Organic and Bioorganic Chemistry, Research
Centre Applied Biocatalysis, University of Graz, Heinrichstrasse 28,
A-8010 Graz, Austria. E-mail: Kurt.Faber@Uni-Graz.at;
Fax: +43-316-380-9840; Tel: +43-316-380-5332
Notes and references
1 E. L. Eliel, S. H. Wilen and M. P. Doyle, Basic Organic Stereochemistry,
Wiley, New York, 2001, pp. 277–278.
2 E. J. Ebbers, G. J. A. Ariaans, J. P. M. Houbiers, A. Bruggink and
B. Zwanenburg, Tetrahedron, 1997, 53, 9417.
3 K. Faber, Chem. Eur. J., 2001, 7, 5004.
Fig. 1 Time course of the biocatalytic racemisation of the enantiomers of
5 and 6.
natural antibiotic agents,16 and are particularly difficult to
racemise using conventional methods due to the ease of their
elimination, forming cinnamic acid. Compound (R)-6 is an
important building block for the synthesis of anti-hypertensive
agents and ACE-inhibitors.17 The remarkable flexibility of this
biocatalytic system was demonstrated by the fact that also
(S)-mandelate (7) was accepted at a fair rate (25%). Most
importantly, o-chloromandelate (8), which is a non-substrate for
mandelate racemase,7 was similarly well accepted (24%). The
(R)-enantiomer of the latter compound is a key intermediate for
the synthesis of anticoagulant agents used in cardiovascular
therapy (Clopidogrel/Plavix).18
4 O. Pamies and J.-E. Ba¨ckvall, Chem. Rev., 2003, 103, 3247.
5 B. Schnell, K. Faber and W. Kroutil, Adv. Synth. Catal., 2003, 345, 563.
6 U. T. Strauss and K. Faber, Tetrahedron: Asymmetry, 1999, 10, 4079.
7 U. Felfer, U. T. Strauss, W. Kroutil, W. M. F. Fabian and K. Faber,
J. Mol. Catal. B: Enzym., 2001, 15, 213.
8 V. M. Powers, C. W. Koo, G. L. Kenyon, J. A. Gerlt and
J. W. Kozarich, Biochemistry, 1991, 30, 9255; X. Prat-Resina,
M. Garcia-Viloca, A. Gonzalez-Lafont and J. M. Lluch,
ChemPhysChem, 2002, 4, 5365.
10 (a) A. Cantwell and D. Dennis, Biochemistry, 1974, 13, 287; (b)
J. S. Pepple and D. Dennis, Biochim. Biophys. Acta, 1976, 429, 1036; (c)
T. Hino and S. Kuroda, Appl. Environ. Microbiol., 1993, 59, 255; (d)
S. B. Melville, T. A. Michel and J. M. Macy, FEMS Microbiol. Lett.,
1987, 40, 289.
11 A. Oren, P. Gurevich and A. Silverman, Can. J. Microbiol., 1995, 41,
302.
12 C. Malleret, R. Lauret, S. D. Ehrlich, F. Morel-Deville and M. Zagorec,
Microbiology, 1998, 144, 3327; K. O. Stetter and O. Kandler, Arch.
Microbiol., 1973, 94, 221; T. Hiyama, S. Fukui and K. Kitahara,
J. Biochem., 1968, 64, 99.
13 Detailed results on the screening and the full substrate spectrum will be
reported in a full paper.
14 (S)-3-Cyclohexyl-lactic acid (3) is a component of the E-selectin inhibitor
(S)-cHexLact-2-O-(3-Galb)(1A3)ddGlc(4A1)aFuc; see: T. Storz,
P. Dittmar, P. F. Fauquex, P. Marschal, W. U. Lottenbach and
H. Steiner, Org. Process Res. Dev., 2003, 7, 559.
15 J. Tao and K. McGee, Org. Process Res. Dev., 2002, 6, 520.
16 N. Valls, M. Lopez-Canet, M. Vallribere and J. Bonjoch, Chem. Eur. J.,
2001, 7, 3446; M. S. Han, C. H. Ryu, S. J. Chung and D. H. Kim, Org.
Lett., 2000, 2, 3149; V. Dieuleveux, D. van der Pyl, J. Chataud and
M. Gueguen, Appl. Environ. Microbiol., 1998, 64, 800.
17 E. Schmidt, H. U. Blaser, P. F. Fauquex, G. Sedelmeier and F. Spindler,
in Microbial Reagents in Organic Synthesis, ed. S. Servi, Kluwer,
The Netherlands, 1992, pp. 377–388.
Close monitoring of the progress of racemisation over time for
both enantiomers of substrates 5 and 6 revealed that both of the
(R)-enantiomers were racemised more rapidly than the corres-
ponding (S)-counterparts (Fig. 1). Such ‘nonsymmetric’ kinetics is
not uncommon for enzyme-catalysed racemisation and is caused
by the difference in KM and kcat values of enantiomers.19 Overall,
the reactions proved to be essentially clean and less than y5% of
side products could be detected. It should be noted that attempts
to racemise 5 and 6 under conventional conditions (aq. pH 2–12,
100 uC, 48 h) were unsuccessful.
In summary, clean biocatalytic racemisation of structurally
diverse aliphatic, aryl-aliphatic and aromatic a-hydroxycarboxylic
acids was accomplished under mild conditions using resting cells of
Lactobacillus paracasei DSM 20207. The scope and limitations of
this novel biocatalytic activity, the nature of the actual enzyme(s)
involved and the mechanism of action responsible for this
racemisation is currently being studied in detail.
18 L. M. van Langen, F. van Rantwijk and R. A. Sheldon, Org. Process
Res. Dev., 2003, 7, 828.
19 M. A. Spies, J. J. Woodward, M. R. Watnik and M. D. Toney, J. Am.
Chem. Soc., 2004, 126, 7464; K. Shibata, K. Shirasuna, K. Motegi,
Y. Kera, H. Abe and R. Yamada, Comp. Biochem. Physiol., B:
Biochem. Mol. Biol., 2000, 126, 509.
This study was performed in cooperation with BASF AG
(Ludwigshafen) within the Competence Center Applied
Biocatalysis and financial support by the TIG, the City of Graz,
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 1904–1905 | 1905