NHCs for nucleophilic addition reactions. In this context,
we have described an efficient NHC-catalyzed trifluoro-
methyl transfer reaction from TMSCF3 to carbonyl com-
pounds12 as well as an NHC-catalyzed cyanation reaction
between TMSCN and carbonyl compounds using very low
catalyst loadings (0.01-1 mol %).13 Analogous NHC-
catalyzed cyanation reactions were also independently dem-
onstrated by three other research groups.14 More recently,
an interesting NHC-catalyzed aziridine ring-opening reaction
with silylated nucleophiles was reported.15 As part of our
ongoing research program on NHC catalysis, we now wish
to report that NHCs are also capable of catalyzing Mu-
kaiyama aldol reactions with as low as 0.05-0.5 mol %
catalyst loadings.
The Mukaiyama aldol reaction, i.e., reaction of an enoxy-
silane with a carbonyl compound, is one of the most
fundamental organic transformations and has been the subject
of intensive investigations for the past three decades.16 The
Mukaiyama aldol reaction can be catalyzed either by Lewis
acids via activation of the electrophiles (i.e., carbonyl
compounds) or by Lewis bases via activation of the nucleo-
philes (i.e., enoxysilanes, Figure 1). For example, reactions
acetate,21 lithium alkoxides,22 N-oxides,23 or N-methylimid-
azole24 with 5-20 mol % catalyst loadings. It was also
reported that Mukaiyama aldol reactions could proceed
without added catalysts in some highly polar solvents such
as DMF, DMSO, ionic liquids, water, or DBU.25 Denmark
has shown that Mukaiyama aldol reactions using the more
reactive enoxytrichlorosilanes could be effectively catalyzed
by phosphoramides or N-oxides.26 It is generally accepted
that, for these Lewis base catalyzed Mukaiyama aldol
reactions, the key step involves the activation of Si-O bonds
through interaction of Si with Lewis basic heteroatom centers
(e.g., N, O, or P, etc.).27
As part of our efforts to expand the scope of NHC
catalysis, we proposed that NHCs could potentially be
utilized as carbon-centered nucleophilic catalysts for activat-
ing the Si-O bonds in enoxysilanes, thereby catalyzing
Mukaiyama aldol reactions. As a test case, we carried out a
series of reactions between 2-naphthaldehyde (1a) and
trimethylsilyl ketene acetal 2 (1.2 equiv) in THF at 23 °C
by using four readily available NHC catalysts (3, 4a, 4b,
and 5, Table 1). We were glad to find that, in the presence
of 0.5 mol % of 1,3-di-tert-butylimidazol-2-ylidene (3), the
desired aldol adduct 6a28 was obtained in 78% yield (after
desilylation) within 3 h at 23 °C (entry 1). Aryl-substituted
imidazol-2-ylidenes were found to be less effective for this
reaction. For example, reaction using 1,3-bis(2,6-diisopro-
(12) Song, J. J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.;
Senanayake, C. H. Org. Lett. 2005, 7, 2193.
(13) Song, J. J.; Gallou, F.; Reeves, J. T.; Tan, Z.; Yee, N. K.;
Senanayake, C. H. J. Org. Chem. 2006, 71, 1273.
(14) (a) Fukuda, Y.; Maeda, Y.; Ishii, S.; Kondo, K.; Aoyama, T.
Synthesis 2006, 589. (b) Fukuda, Y.; Maeda, Y.; Kondo, K.; Aoyama, T.
Chem. Pharm. Bull. 2006, 54, 397. (c) Fukuda, Y.; Maeda, Y.; Kondo, K.;
Aoyama, T. Synthesis 2006, 1937. (d) Fukuda, Y.; Kondo, K.; Aoyama, T.
Synthesis 2006, 2649. (e) Suzuki, Y.; Abu Bakar, M. D.; Muramatsu, K.;
Sato, M. Tetrahedron 2006, 62, 4227. (f) Kano, T.; Sasaki, K.; Konishi,
T.; Mii, H.; Maruoka, K. Tetrahedron Lett. 2006, 47, 4615.
(15) (a) Wu, J.; Sun, X.; Ye, S.; Sun, W. Tetrahedron Lett. 2006, 47,
4813. (b) For a related aziridine opening reaction with acid anhydride, see:
Sun, X.; Ye, S.; Wu, J. Eur. J. Org. Chem. 2006, 4787.
(16) For a recent review, see: Mukaiyama, T. Angew. Chem., Int. Ed.
2004, 43, 5590.
(17) (a) Noyori, R.; Nishida, I.; Sakata, J. J. Am. Chem. Soc. 1983, 105,
1598. (b) Nakamura, E.; Shimizu, M.; Kuwajima, I.; Sakata, J.; Yokoyama,
K.; Noyori, R. J. Org. Chem. 1983, 48, 932.
(18) Matsukawa, S.; Okano, N.; Imamoto, T. Tetrahedron Lett. 2000,
41, 103.
(19) Miura, K.; Nakagawa, T.; Hosomi, A. J. Am. Chem. Soc. 2002,
124, 536.
(20) Mukaiyama, T.; Fujisawa, H.; Nakagawa, T. HelV. Chim. Acta 2002,
85, 4518.
(21) Nakagawa, T.; Fujisawa, H.; Nagata, Y.; Mukaiyama, T. Bull. Chem.
Soc. Jpn. 2004, 77, 1555.
(22) Fujisawa, H.; Nakagawa, T.; Mukaiyama, T. AdV. Synth. Catal. 2004,
346, 1241.
Figure 1. Lewis base catalyzed Mukaiyama aldol reactions.
between enoxysilanes and aldehydes could be catalyzed by
fluoride,17 phosphines,18 CaCl2,19 lithium amides,20 lithium
(4) (a) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004,
126, 14370. (b) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43,
6205. (c) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905. (d) Burstein,
C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006, 2418. (e) Nair, V.;
Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E. Org. Lett. 2006, 8, 507.
(f) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006,
128, 8736. (g) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131.
(5) (a) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128,
8418. (b) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128,
15088.
(6) Sohn, S. S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021.
(7) (a) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4558. (b)
Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004,
126, 9518. (c) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127,
16406.
(8) Duong, H. A.; Cross, M. J.; Louie, J. Org. Lett. 2004, 6, 4679.
(9) (a) Grasa, G. A.; Guveli, T.; Singh, R.; Nolan, S. P. J. Org. Chem.
2003, 68, 2812. (b) Singh, R.; Kissling, R. M.; Letellier, M.-A.; Nolan, S.
P. J. Org. Chem. 2004, 69, 209. (c) Grasa, G. A.; Kissling, R. M.; Nolan,
S. P. Org. Lett. 2002, 4, 3583. (d) Nyce, G. W.; Lamboy, J. A.; Connor, E.
F.; Waymouth, R. M.; Hedrick, J. L. Org. Lett. 2002, 4, 3587. (e) Nyce, G.
W.; Glauser, T.; Connor, E. F.; Mock, A.; Waymouth, R. M.; Hedrick, J.
L. J. Am. Chem. Soc. 2003, 125, 3046. (f) Connor, E. F.; Nyce, G. W.;
Myers, M.; Mock, A.; Hedrick, J. L. J. Am. Chem. Soc. 2002, 124, 914. (g)
Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 1347. (h) Singh, R.;
Nolan, S. P. Chem. Commun. 2005, 43, 5456. (i) Suzuki, Y.; Yamauchi,
K.; Muramatsu, K.; Sato, M. Chem. Commun. 2004, 2770.
(23) Hagiwara, H.; Inoguchi, H.; Fukushima, M.; Hoshi, T.; Suzuki, T.
Synlett 2005, 2388.
(24) Hagiwara, H.; Inoguchi, H.; Fukushima, M.; Hoshi, T.; Suzuki, T.
Tetrahedron Lett. 2006, 47, 5371.
(25) (a) Loh, T.-P.; Feng, L.-C.; Wei, L.-L. Tetrahedron 2000, 56, 7309.
(b) Chen, S.-L.; Ji, S.-J.; Loh, T.-P. Tetrahedron Lett. 2004, 45, 375. (c)
Shen, Z.-L.; Ji, S.-J.; Loh, T.-P. Tetrahedron Lett. 2005, 46, 507. (d)
Genisson, Y.; Gorrichon, L. Tetrahedron Lett. 2000, 41, 4881.
(26) (a) Denmark, S. E.; Winter, S. B. D.; Su, X.; Wong, K.-T. J. Am.
Chem. Soc. 1996, 118, 7404. (b) Denmark, S. E.; Fan, Y. J. Am. Chem.
Soc. 2002, 124, 4233. (c) For a review, see: Denmark, S. E.; Stavenger, R.
A. Acc. Chem. Res. 2000, 33, 432.
(10) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453.
(11) Fischer, C.; Smith, S. W.; Powell, D. A.; Fu, G. C. J. Am. Chem.
Soc. 2006, 128, 1472.
(27) (a) Denmark, S. E.; Lee, W. J. Org. Chem. 1994, 59, 707. (b) See
refs 16, 18, 20, and 21.
(28) Fu, F.; Teo, Y.-C.; Loh, T. P. Tetrahedron Lett. 2006, 47, 4267.
1014
Org. Lett., Vol. 9, No. 6, 2007