a
Scheme 1
Table 1. Optimization of Reaction Conditions
In this context, we introduce a proof of principle to
integrate olefin isomerization in a tandem manner with
CꢀH bond activation promoted by only a single-component
Ni catalyst (Scheme 1). We speculate that the tandem CꢀH
activation/alkene isomerization process is possible if one
of the reaction sequences is more facile than the other,
ensuring independence of the two operating catalytic
cycles. Conversely, a particular reactivity or product
selectivity can be reversed from the similar tandem pro-
tocol if one of the facile reaction sequences can be delayed
by chemical intervention. Herein, we unravel the first
Ni-promoted prototype reaction based on hybridizing
the CꢀH activation of heteroarenes with alkene isomer-
ization of allylarenes, leading to the branched hydro-
heteroarylation products. Simultaneously, we are able to
chemically toggle the reaction selectivity toward linear
adducts by delaying the alkene isomerization process
using a chemical trigger (AlMe3).
a
Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), Ni(COD)
2
b
(
0.05 mmol), and ligand in toluene (1 mL) at 130 °C for 16 h. Isolated yield.
a
Table 2. Scope with Various Allylbenzenes: Branched Selectivity
With our previous experience in nickel-mediated CꢀH
8
g,i
bondfunctionalization ofpyridine and heteroarenes, we
are quite optimistic that the alkene isomerization cycle should
proceed relatively fast. First, we examined the isomerization
process of allylbenzene 2a in the presence of Ni(COD)2
(
8) (a) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem.
Soc. 2009, 131, 15996. (b) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am.
Chem. Soc. 2008, 130, 2448. (c) Nakao, Y.; Idei, H.; Kanyiva, K. S.;
Hiyama, T. J. Am. Chem. Soc. 2009, 131, 5070. (d) Nakao, Y.; Morita,
E.; Idei, H.; Hiyama, T. J. Am. Chem. Soc. 2011, 133, 3264. (e) Nakao,
Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc. 2010,
132, 13666. (f) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani,
N. J. Am. Chem. Soc. 2011, 133, 14952. (g) Tsai, C.-C.; Shih, W.-C.;
Fang, C.-H.; Li, C.-Y.; Ong, T.-G.; Yap, G. P. A. J. Am. Chem. Soc.
2
2
010, 132, 11887. (h) Ye, M.; Gao, G.-L.; Yu, J.-Q. J. Am. Chem. Soc.
011, 133, 6964. (i) Shih, W.-C.; Chen, W.-C.; Lai, Y.-C.; Yu, M.-S.; Ho,
a
Reaction conditions: 1a (0.5 mmol), 2 (1.0 mmol), Ni(COD)
(0.05 mmol), and IMes (0.05 mmol) in toluene (1 mL) at 130 °C for
2
J.-J.; Yap, G. P. A.; Ong, T.-G. Org. Lett. 2012, 14, 2046. (j) Clement,
N. D.; Cavell, K. J.; Jones, C.; Elsevier, C. J. Angew. Chem., Int. Ed.
b
c
16 h, unless otherwise noted. Isolated yield (3þ4). Ni(COD)
2
2004, 43, 1277. (k) Clement, N. D.; Cavell, K. J. Angew. Chem., Int. Ed.
2004, 43, 3845. (l) Liu, S.; Sawicki, J.; Driver, T. G. Org. Lett. 2012, 14,
3744. (m) Doster, M. E.; Hatnean, J. A.; Jeftic, T.; Modi, S.; Johnson,
(
0.1 mmol) and IMes (0.1 mmol) were used.
S. A. J. Am. Chem. Soc. 2010, 132, 11923. (n) Shacklady-McAtee, D. M.;
Dasgupta, S.; Watson, M. P. Org. Lett. 2011, 13, 3490. (o) Amaike, K.;
Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573.
with various ligands in toluene upon heating (Table S1,
Supporting Information). It was promising to find that
2a was exclusively isomerized to trans-β-methylstyrene
10
(
p) Guihaum ꢀe , J.; Halbert, S.; Eisenstein, O.; Perutz, R. N. Organome-
tallics 2012, 31, 1300. (q) Vechorkin, O.; Proust, V.; Hu, X. Angew.
Chem., Int. Ed. 2010, 49, 3061. (r) Qu, G.-R.; Xin, P.-Y.; Niu, H.-Y.;
Wang, D.-C.; Ding, R.-F.; Guo, H.-M. Chem. Commun. 2011, 47, 11140.
within 1 h at 80 °C using 10 mol % of Ni(COD) and IMes
2
10
combination. We next investigated the nickel-catalyzed
hydroheteroarylation of 2a with N-methylbenzimidazole
(9) Selected review papers: (a) Wang, D. H.; Engle, K. M.; Shi, B. F.;
Yu, J. Q. Science 2010, 327, 315. (b) Daugulis, O.; Do, H.-Q.; Shabashov,
D. Acc. Chem. Res. 2009, 42, 1074. (c) Ackermann, L.; Vicente, R.;
Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (d) Lyons, T. W.;
Sanford, M. S. Chem. Rev. 2010, 110, 1147. (e) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174. (f) Satoh, T.; Miura, M. Chem.
Lett. 2007, 36, 200. (g) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew.
Chem., Int. Ed. 2011, 50, 11062. (h) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem.
Rev. 2011, 111, 1293. (i) Davies, H. M. L.; Morton, D. Chem. Soc. Rev.
1a with results summarized in Table 1. Nitrogen-contain-
ing ligands, such as bipyridine and 1,10-phenanthroline,
were completely ineffective (entries 1 and 2). The use of
PCy gave a linear (3a) to branched (4a) product ratio of
3
2011, 40, 1857.
(10) See the Supporting Information for further details.
Org. Lett., Vol. 15, No. 20, 2013
5359