Macromolecules, Vol. 38, No. 16, 2005
Side-Group Liquid-Crystalline Polymers 6953
Supporting Information Available: Text discussing a
shifting procedure within a single master plot and figures
showing storage modulus and loss modulus master curves
for 518 kg/mol PBSiCB5 and time-temperature shift fac-
tors obtained from shifting the data from Figure 8. This
material is available free of charge via the Internet at
Higher molecular weights (in which the plateau extends
to lower frequencies) would presumably lead to more
dramatic changes in the low-frequency smectic response.
4. Conclusions
We have synthesized new model 1,2-polybutadiene-
based thermotropic SGLCPs with cyano-biphenyl meso-
genic side groups with relatively low polydispersity and
high molecular weight. Rheology and X-ray methods
were used to characterize their phase structure and
viscoelastic properties and showed that these polymers
exhibit smectic ordering in the liquid crystalline state.
The linear viscoelastic behavior is strongly affected by
the smectic ordering. The temperature dependence of
the dynamics reveals the existence of three distinct
regimes, which X-ray scattering demonstrated to be
smectic at low temperatures (T < 60 °C), isotropic at
high temperatures (T > 80 °C), and an intermediate
smectic-isotropic biphase. The presence of this biphasic
region is attributed to the incomplete attachment of the
mesogenic units to the pendant vinyl groups of the 1,2-
polybutadiene pre-polymer and the resulting statistical
distribution of composition within the polymer sample.
This concept allows rationalization of how the location
and width of the biphase region varies with polymer
composition and molecular weight. While smectic SGLCP
data have frequently been shifted to create master plots
in which isotropic and smectic data are superimposed
in the high-frequency limit,13,19 we question whether
such a representation can be justified in the present
case. We suggest an alternate representation of the data
that emphasizes rheological consequences of ordering
while requiring fewer assumptions. The isotropic phase
rheology is strongly dependent on molecular weight and
shows the emergence of an entanglement plateau for
high molecular weight samples. Conversely, the smectic
phase rheology does not depend as strongly on polymer
molecular weight, consistent with the assumption that
the viscoelastic response is dominated by the smectic
layers.
References and Notes
(1) Hsu, C. S. Prog. Polym. Sci. 1997, 22, 829.
(2) Shibaev, V. P.; Kostromin, S. G.; Plate, N. A.; Ivanov, S. A.;
Vetrov, V. Y.; Yakovlev, I. A. Polym. Commun. 1983, 24, 364.
(3) Eich, M.; Wendorff, J. H.; Ringsdorf, H.; Schmidt, H. W.
Makromol. Chem. 1985, 186, 2639.
(4) Cabrera, I.; Krongauz, V. Macromolecules 1987, 20, 2713.
(5) Cabrera, I.; Krongauz, V.; Ringsdorf, H. Angew. Chem., Int.
Ed. 1987, 26, 1178.
(6) Colby, R. H.; Gillmor, J. R.; Galli, G.; Laus, M.; Ober, C. K.;
Hall, E. Liq. Cryst. 1993, 13, 233.
(7) Kresse, H.; Stettin, H.; Tennstedt, E.; Kostromin, S. Mol.
Cryst. Liq. Cryst. 1990, 191, 135.
(8) Findlay, R. B. Mol. Cryst. Liq. Cryst. 1993, 231, 137.
(9) Porter, R. S.; Johnson, J. F. In Rheology; Eirich, F. R., Ed.;
Academic Press: New York, 1967; Vol. 4, Chapter 5.
(10) Wissbrun, K. F.; Griffin, A. C. J. Polym. Sci. Pol. Phys. 1982,
20, 1835.
(11) Baird, D. G. In Liquid Crystalline Order in Polymers;
Blumstein, A. Y., Ed.; Academic Press: New York, 1978.
(12) Papkov, S. P.; Kulichik, Vg; Kalmykov, Vd; Malkin, A. Y. J.
Polym. Sci. Pol. Phys. 1974, 12, 1753.
(13) Rubin, S. F.; Kannan, R. M.; Kornfield, J. A.; Boeffel, C.
Macromolecules 1995, 28, 3521.
(14) Berghausen, J.; Fuchs, J.; Richtering, W. Macromolecules
1997, 30, 7574.
(15) Fourmaux-Demange, V.; Brulet, A.; Cotton, J. P.; Hilliou, L.;
Martinoty, P.; Keller, P.; Boue´, F. Macromolecules 1998, 31,
7445.
(16) Quijada-Garrido, I.; Siebert, H.; Friedrich, C.; Schmidt, C.
Macromolecules 2000, 33, 3844.
(17) Lee, K. M.; Han, C. D. Macromolecules 2002, 35, 6263.
(18) Larson, R. G.; Winey, K. I.; Patel, S. S.; Watanabe, H.;
Bruinsma, R. Rheol. Acta 1993, 32, 245.
(19) Wewerka, A.; Viertler, K.; Vlassopoulos, D.; Stelzer, F. Rheol.
Acta 2001, 40, 416.
(20) Lee, K. M.; Han, C. D. Macromolecules 2003, 36, 8796.
(21) Rendon, S.; Burghardt, W. R.; Auad, M. L.; Kornfield, J. A.,
in preparation.
(22) Halasa, A. F.; Lohr, D. F.; Hall, J. E. J. Polym. Sci., Part A:
Acknowledgment. We gratefully acknowledge fi-
nancial support from the Air Force Office of Scientific
Research (AFOSR)-LC MURI (f4962-97-1-0014), Fun-
dacio´n Antorchas (Argentina), CONICET (Argentina),
and the National Science Foundation (DMI-0132519).
X-ray scattering experiments were conducted at the
DuPont-Northwestern-Dow Collaborative Access Team
(DND-CAT) Synchrotron Research Center located at
Sector 5 of the Advanced Photon Source of Argonne
National Laboratory. DND-CAT is supported by the E.I.
DuPont de Nemours & Co., the Dow Chemical Com-
pany, and the National Science Foundation through
Grant DMR-9304725 and the State of Illinois through
the Department of Commerce and the Board of Higher
Education Grant IBHE HECA NWU 96. Use of the
Advanced Photon Source was supported by the U.S.
Department of Energy, Basic Energy Sciences, Office
of Energy Research, under Contract No. W-31-102-Eng-
38.
Polym. Chem. 1981, 19, 1357.
(23) Bywater, S.; MacKerron, D. H.; Worsfold, D. J.; Schue, F. J.
Polym. Sci., Polym. Chem. Ed. 1985, 23, 1997.
(24) Sanger, J.; Tefehne, C.; Lay, R.; Gronski, W. Polym. Bull.
1996, 36, 19.
(25) Hempenius, M. A.; Lammertink, R. G. H.; Vancso, G. J.
Macromol. Rapid Commun. 1996, 17, 299.
(26) Hempenius, M. A.; Lammertink, R. G. H.; Vancso, G. J.
Macromolecules 1997, 30, 266.
(27) Moment, A.; Miranda, R.; Hammond, P. T. Macromol. Rapid
Commun. 1998, 19, 573.
(28) Moment, A.; Hammond, P. T. Polymer 2001, 42, 6945.
(29) Ugaz, V. M.; Burghardt, W. R. Macromolecules 1998, 31,
8474.
(30) Rosedale, J. H.; Bates, F. S. Macromolecules 1990, 23, 2329.
(31) Kasko, A. M.; Grunwald, S. R.; Pugh, C. Macromolecules
2002, 35, 5466.
(32) Stupp, S. I.; Wu, J. L.; Moore, J. S.; Martin, P. G. Macro-
molecules 1991, 24, 6399.
(33) Wu, S. J. Polym. Sci., Polym. Phys. Ed. 1987, 25, 2511.
MA050551F