Page 7 of 8
Journal of the American Chemical Society
H.; Li, S; Zhang, M.–T.; Luo, S. “A Chiral Ion-Pair Photoredox Organocat-
alyst: Enantioselective Anti-Markovnikov Hydroetherification of Alkenols,”
Org. Chem. Front., 2017, 4, 1037–1041. (c) Wang, H.; Ren, Y.; Wang, K.;
Man, Y.; Xiang, Y.; Li, N.; Tang, B. “Visible Light-Induced Cyclization Re-
actions for the Synthesis of 1,2,4–Triazolines and 1,2,4–Triazoles,” Chem.
Commun., 2017, 53, 9644–9647. (d) Gentry, E. C.; Rono, L. J.; Hale, M. E.;
Matsuura, R.; Knowles, R. R. “Enantioselective Synthesis of Pyrroloin-
dolines via Noncovalent Stabilization of Indole Radical Cations and Appli-
cations to the Synthesis of Alkaloid Natural Products,” J. Am. Chem. Soc.,
2018, 140, 3394–3402.
1
2
3
4
5
6
7
8
P. "Visible Light Photocatalysis of Intramolecular Radical Cation Diels–Al-
der Cycloadditions," Tetrahedron Lett. 2012, 53, 3073–3076. (c) Lin, S. S.;
Lies, S. D.; Gravatt, C. S.; Yoon, T. P. “Radical Cation Cycloadditions Using
Cleavable Redox Auxiliaries,” Org. Lett. 2017, 19, 368–371.
7
(a) Crutchley, R. J.; Lever, A. B. P. “Ruthenium(II) Tris(bipyrazyl) Di-
cation – A New Photocatalyst,” J. Am. Chem. Soc. 1980, 102, 7128–7129. (b)
Rillema, D. P.; Allen, G.; Meyer, T. J.; Conrad, D. “Redox Properties of Ru-
thenium(II) Tris Chelate Complexes Containing the Ligands 2,2'-bipyra-
zine, 2,2'-bipyridine, and 2,2'-bipyrimidine,” Inorg. Chem. 1983, 22, 1617–
1622.
17
Adamson, Q. W.; Namnath, J.; Shastry, V. J.; Slawson, V. “Thermody-
9
namic Inefficiency of Conversion of Solar Energy to Work,” J. Chem. Ed.
1984, 61, 221.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
8
Several other photocatalytic radical cation Diels–Alder reactions have
18
Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletii, F. “Pho-
been reported using alternate photocatalysts. For leading references, see: (a)
Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. “Photooxidizing Chromium
Catalysts for Promoting Radical Cation Cycloadditions,” Angew. Chem. Int.
Ed. 2015, 54, 6506–6510. (b) Pitre, S. P.; Scaiano, J. C.; Yoon, T. P. “Photo-
catalytic Indole Diels–Alder Cycloadditions Mediated by Heterogenous
Platinum-Modified Titanium Dioxide,” ACS Catal. 2017, 7, 6440–6444. (c)
Gieseler, A.; Steckhan, E.; Wiest, O; Knoch, F. “Photochemically Induced
Radical Cation Diels–Alder Reaction of Indole and Electron-Rich Dienes,”
J. Org. Chem. 1991, 56, 1405–1411.
tochemistry and Photophysics of Coordination Compounds: Iridium,” Top.
Curr. Chem. 2007, 281, 143–203.
19
(a) Forster, M.; Hester, R. E. “Resonance Raman Investigation of Elec-
2+
tronically Excited Ru(bipyridine)3 Using a CW Laser,” Chem. Phys. Lett.
1981, 81, 42–47. (b) Bradley, P. G.; Kress, N.; Hornberger, B. A.; Dallinger,
R. F.; Woodruff, W. H. “Vibrational Spectroscopy of the Electronically Ex-
cited State. 5. Time-Resolved Resonance Raman Study of Tris(bipyridine)
Ruthenium(II) and Related Complexes. Definitive Evidence for the Local-
ized MLCT State,” J. Am. Chem. Soc. 1981, 103, 7441–7446. (c) Ceulemans,
A.; Vanquickenborne, L. G. “On the Charge-Transfer Spectra of Iron(II)-
and Ruthenium(II)-Tris(2,2'-bipyridyl) Complexes,” J. Am. Chem. Soc.
1981, 103, 2238–2241. (d) Ohsawa, Y.; DeArmond, M. K.; Hanck, K. W.;
Morris, D. E.; Whitten, D. G.; Neveux, P. E. “Spatially Isolated Redox Orbit-
als: Evidence from Low-Temperature Voltammetry,” J. Am. Chem. Soc.
1983, 105, 6522–6524.
9
Bauld, N. L. “Cation Radical Cycloadditions and Related Sigmatropic
Reactions,” Tetrahedron 1989, 45, 5307–5363.
10
Cismesia, M. A.; Yoon, T. P. “Characterizing Chain Processes in Visible
Light Photoredox Catalysis,” Chem. Sci. 2015, 6, 5426–5434.
11
Furue, M.; Maruyama, K.; Oguni, T.; Naiki, M.; Kamachi, M. “Trifluo-
romethyl-substituted 2,2'-bipyridine Ligands. Synthetic Control of Excited-
State Properties of Ruthenium(II) Tris-Chelate Complexes,” Inorg. Chem.
1992, 31, 3792–3795.
20
Kober, E. M.; Sullivan, B. P.; Meyer, T. J. “Solvent Dependence of Metal-
to-Ligand Charge-Transfer Transitions. Evidence for Initial Electron Local-
ization in MLCT Excited States of 2,2’-Bipyridine Complexes of Ruthe-
nium(II) and Osmium(II),” Inorg. Chem. 1984, 23, 2098–2104.
12
Strauss, S. H. “The Search for Larger and More Weakly Coordinating
Anions” Chem. Rev. 1993, 93, 927.
13
(a) Ischay, M. A.; Ament, M. S.; Yoon, T. P. “Crossed Intermolecular
21
(a) Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. “Enantioselective Thi-
[2+2] Cycloaddition of Styrenes by Visible Light Photocatalysis,” Chem. Sci.
2012, 2046–2050. (b) Douglas, J. J.; Nguyen, J. D.; Cole, K. P.; Stephenson,
C. R. J. “Enabling Novel Photoredox Reactivity via Photocatalyst Selection,”
Aldrichim. Acta 2014, 47, 15–25.
ourea-Catalyzed Additions to Oxocarbenium Ions,” J. Am. Chem. Soc. 2008,
130, 7198–7199. (b) Birrell, J. A.; Desrosiers, J.-N.; Jacobsen, E. N. “Enanti-
oselective Acylation of Silyl Ketene Acetals through Fluoride Anion-Binding
Catalysis,” J. Am. Chem. Soc. 2011, 133, 13872–13875. (c) Wasa, M.; Liu, R.
Y.; Roche, S. P.; Jacobsen, E. N. “Asymmetric Mannich Synthesis of α-Amino
Esters by Anion-Binding Catalysis,” J. Am. Chem. Soc. 2014, 136, 12872–
12875.
14
(a) Ward, W. M.; Farnum, B. H.; Siegler, M.; Meyer, G. J. “Chloride Ion-
Pairing with Ru(II) Polypyridyl Compounds in Dichloromethane,” J. Phys.
Chem. A 2013, 117, 8883–8894. (b) Wehlin, S. A. M.; Troian-Gautier, L.;
Li, G.; Meyer, G. J. “Chloride Oxidation by Ruthenium Excited-States in So-
lution,” J. Am. Chem. Soc., 2017, 139, 12903–12906. (c) Troian-Gautier, L.;
Wehlin, S. A. M.; Meyer, G. J. “Photophysical Properties of Tetracationic
Ruthenium Complexes and Their Ter-Ionic Assemblies with Chloride,” In-
org. Chem., 2018, 57, 12232–12244.
22
Gansäuer has recently reported the use of hydrogen bond-donating co-
catalysts to influence the rate of titanocene-mediated electron transfer reac-
tions. See: Liedtke, T.; Spannring, P.; Riccardi, L.; Gansäuer, A. “Mecha-
nism-Based Condition Screening for Sustainable Catalysis in Single-Elec-
tron Steps by Cyclic Voltammetry,” Angew. Chem. Int. Ed. 2018, 57, 5006–
5010.
1
15
The chemical shifts associated with the ligands in the H NMR of the
photocatalysts vary as a function of counteranion identity and are consistent
with observations made by Meyer. These data are summarized in the Sup-
porting Information. See: Li, G.; Swords, W. B.; Meyer, G. J. “Bromide
Photo-oxidation Sensitized to Visible light in Consecutive Ion Pairs,” J. Am.
Chem. Soc. 2017, 139, 14983–14991.
23
(a) Cranwell, P. B.; Hiscock, R.; Haynes, C. J. E.; Light, M. E.; Wells, N.
J.; Gale, P. A. “Anion Recognition and Transport Properties of Sulfamide-,
Phosphoric Triamide- and Thiophosphoric Triamide-Based Receptors,”
Chem. Commun. 2013, 49, 874–876. (b) Borovika, A.; Tang, P. I.; Klapman,
S.; Nagorny, P. “Thiophosphoramide-Based Cooperative Catalysts for
Brønsted Acid Promoted Ionic Diels–Alder Reactions,” Angew. Chem. Int.
Ed. 2013, 52, 13424–13428.
16
Four recent reports have described the influence of chiral counteranions
on the enantioselectivity of photocatalytic radical cation reactions: (a)
Morse, P. D.; Nguyen, T. M.; Cruz, C. L.; Nicewicz, D. A. “Enantioselective
Counter-Anions in Photoredox Catalysis: The Asymmetric Cation Radical
Diels–Alder Reaction,” Tetrahedron 2018, 74, 3266–3272. (b) Yang, Z.; Li,
ACS Paragon Plus Environment