10.1002/chem.201801908
Chemistry - A European Journal
ARTICLE
[9] V. F. Pais, M. M. Alcaide, R. López-Rodríguez, D. Collado, F. Nájera, E.
Pérez-Inestrosa, E. Álvarez, J. M. Lassaletta, R. Fernández, A. Ros, U.
Pischel, Chem. Eur. J. 2015, 21, 15369-15376.
[10] V. F. Pais, P. Ramírez-López, A. Romero-Arenas, D. Collado, F. Nájera,
E. Pérez-Inestrosa, R. Fernández, J. M. Lassaletta, A. Ros, U. Pischel, J. Org.
Chem. 2016, 81, 9605-9611.
[11] F. M. F. Santos, J. N. Rosa, N. R. Candeias, C. Parente Carvalho, A. I.
Matos, A. E. Ventura, H. F. Florindo, L. C. Silva, U. Pischel, P. M. P. Gois,
Chem. Eur. J. 2016, 22, 1631-1637.
[12] D. Frath, P. Didier, Y. Mély, J. Massue, G. Ulrich, ChemPhotoChem 2017,
1, 109-112.
[13] A. Coskun, E. U. Akkaya, J. Am. Chem. Soc. 2006, 128, 14474-14475.
[14] S. O. McDonnell, D. F. O’Shea, Org. Lett. 2006, 8, 3493-3496.
[15] O. A. Bozdemir, R. Guliyev, O. Buyukcakir, S. Selcuk, S. Kolemen, G.
Gulseren, T. Nalbantoglu, H. Boyaci, E. U. Akkaya, J. Am. Chem. Soc. 2010,
132, 8029-8036.
Identical solutions in toluene contained in quartz cuvettes of 2 mm optical
pathlength were used first for ECD and then for CPL measurements,
adopting concentrations of 0.25 mM, 0.3 mM, and 0.4 mM for 10, 11, and
12, respectively. Aggregation effects at these concentrations were
excluded based on the fact that the ECD spectra matched those
measured in diluted solutions (down to 10-20 M). A Jasco 815SE
spectropolarimeter was employed for ECD measurements (time constant
= 2 s, monochromator velocity 100 nm/min). For CPL we used a
75]
homemade instrument as described in previous works;[74,
the
excitation radiation was brought to the cell from a Jasco FP8200
fluorimeter through an optical fiber containing water. An excitation
wavelength of 440 nm was used for 10, 420 nm for 11, and 475 nm for
12. A 90°-scattering geometry was chosen, excitation with light polarized
along the direction of collection of the emitted light was essential to avoid
linearly polarized contributions;[75] 8 scans were taken for compound 10
and 5 scans for compound 11 and 12.
[16] L.-Y. Niu, Y.-S. Guan, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, J.
Am. Chem. Soc. 2012, 134, 18928-18931.
[17] S. Erbas-Cakmak, O. A. Bozdemir, Y. Cakmak, E. U. Akkaya, Chem. Sci.
2013, 4, 858-862.
Computational Methods. Density Functional Theory (DFT) calculations
have been carried out with the Gaussian16 quantum chemistry code.[76]
Molecular structures have been optimized in their ground state and first
[18] Y.-L. Rao, S. Wang, Inorg. Chem. 2011, 50, 12263-12274.
[19] Y.-L. Rao, H. Amarne, S.-B. Zhao, T. M. McCormick, S. Martić, Y. Sun,
R.-Y. Wang, S. Wang, J. Am. Chem. Soc. 2008, 130, 12898-12900.
[20] H. Amarne, C. Baik, S. K. Murphy, S. Wang, Chem. Eur. J. 2010, 16,
4750-4761.
excited state (by DFT and TD-DFT calculations) at the cam-
78]
B3LYP/def2SVP level of theory.[77,
The transition energies, dipole
strengths, and rotational strengths have been calculated by using TD-
DFT (70 states have been considered for the calculations). A constant
bandwidth of 0.2 eV was applied to each transition.
[21] D. Frath, A. Poirel, G. Ulrich, A. De Nicola, R. Ziessel, Chem. Commun.
2013, 49, 4908-4910.
[22] H. Lu, J. Mack, Y. Yang, Z. Shen, Chem. Soc. Rev. 2014, 43, 4778-4823.
[23] S. P. J. T. Bachollet, D. Volz, B. Fiser, S. Münch, F. Rönicke, J. Carrillo, H.
Adams, U. Schepers, E. Gómez-Bengoa, S. Bräse, J. P. A. Harrity, Chem. Eur.
J. 2016, 22, 12430-12438.
Acknowledgements
[24] S. K. Mellerup, K. Yuan, C. Nguyen, Z.-H. Lu, S. Wang, Chem. Eur. J.
2016, 22, 12464-12472.
[25] M. M. Alcaide, F. M. F. Santos, V. F. Pais, J. I. Carvalho, D. Collado, E.
Pérez-Inestrosa, J. F. Arteaga, F. Boscá, P. M. P. Gois, U. Pischel, J. Org.
Chem. 2017, 82, 7151-7158.
[26] J. H. Golden, J. W. Facendola, D. Sylvinson M. R., C. Quintana Baez, P. I.
Djurovich, M. E. Thompson, J. Org. Chem. 2017, 82, 7215-7222.
[27] M. Urban, K. Durka, P. Jankowski, J. Serwatowski, S. Luliński, J. Org.
Chem. 2017, 82, 8234-8241.
[28] F. Boscá, M. C. Cuquerella, V. F. Pais, A. Ros, U. Pischel,
ChemPhotoChem 2018, 2, 34-41.
[29] J. Kumar, T. Nakashima, T. Kawai, J. Phys. Chem. Lett. 2015, 6, 3445-
3452.
[30] E. M. Sánchez-Carnerero, A. R. Agarrabeitia, F. Moreno, B. L. Maroto, G.
Muller, M. J. Ortiz, S. de la Moya, Chem. Eur. J. 2015, 21, 13488-13500.
[31] G. Longhi, E. Castiglioni, J. Koshoubu, G. Mazzeo, S. Abbate, Chirality
2016, 28, 696-707.
[32] H. Tanaka, Y. Inoue, T. Mori, ChemPhotoChem 2018, 2, 386-402.
[33] K. E. S. Phillips, T. J. Katz, S. Jockusch, A. J. Lovinger, N. J. Turro, J. Am.
Chem. Soc. 2001, 123, 11899-11907.
This work was financially supported by the Spanish Ministry of
Economy, Industry, and Competitiveness (CTQ2014-54729-C2-
1-P for U.P., CTQ2013-48164-C2-1-P, CTQ2013-48164-C2-2-P
for A.R., Ramon y Cajal contract RYC-2013-12585 for A.R., PhD
fellowship BES-2015-074458 for Z.D.), the ERDF, the Junta de
Andalucía (2012/FQM-2140 for U.P. and 2012/FQM-1078 for
A.R.), Fondazione Cariplo and Regione Lombardia (Big&Open
Data Innovation Laboratory, BODaI-Lab, University of Brescia).
We further acknowledge the use of computer and software
facilities at CINECA - Via Magnanelli 6/3 40033 - Casalecchio di
Reno (Bologna), Italy. A.R. thanks Prof. J. M. Lassaletta (CSIC,
Univ. Seville) and Prof. R. Fernández (Univ. Seville) for their
continuous support and helpful discussions.
[34] T. Kaseyama, S. Furumi, X. Zhang, K. Tanaka, M. Takeuchi, Angew.
Chem. Int. Ed. 2011, 50, 3684-3687.
[35] T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, T. Haino,
Chem. Commun. 2012, 48, 6025-6027.
Keywords: boron • helicene • push-pull chromophores • circular
dichroism • circularly polarized luminescence
[36] F. Li, Y. Li, G. Wei, Y. Wang, S. Li, Y. Cheng, Chem. Eur. J. 2016, 22,
12910-12915.
[37] S. P. Morcillo, D. Miguel, L. Álvarez de Cienfuegos, J. Justicia, S. Abbate,
E. Castiglioni, C. Bour, M. Ribagorda, D. J. Cárdenas, J. M. Paredes, L.
Crovetto, D. Choquesillo-Lazarte, A. J. Mota, M. C. Carreño, G. Longhi, J. M.
Cuerva, Chem. Sci. 2016, 7, 5663-5670.
[ ] . oki, . Toyoda, . F. K gel, R. Sakamoto, J. Kumar, Y. Kitagawa, K.
Harano, T. Kawai, H. Nishihara, J. Am. Chem. Soc. 2017, 139, 16024-16027.
[39] M. Toyoda, Y. Imai, T. Mori, J. Phys. Chem. Lett. 2017, 8, 42-48.
[40] C. M. Cruz, I. R. Márquez, I. F. A. Mariz, V. Blanco, C. Sánchez-Sánchez,
J. M. Sobrado, J. A. Martín-Gago, J. M. Cuerva, E. Maçôas, A. G. Campaña,
Chem. Sci. 2018, 9, 3917-3924.
[41] H. Maeda, Y. Bando, K. Shimomura, I. Yamada, M. Naito, K. Nobusawa,
H. Tsumatori, T. Kawai, J. Am. Chem. Soc. 2011, 133, 9266-9269.
[42] H. Maeda, T. Shirai, Y. Bando, K. Takaishi, M. Uchiyama, A. Muranaka, T.
Kawai, M. Naito, Org. Lett. 2013, 15, 6006-6009.
[1] A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891-4932.
[2] G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184-
1201.
[3] D. Frath, J. Massue, G. Ulrich, R. Ziessel, Angew. Chem. Int. Ed. 2014, 53,
2290-2310.
[4] Q. Zheng, G. Xu, P. N. Prasad, Chem. Eur. J. 2008, 14, 5812-5819.
[5] S. Zhang, T. Wu, J. Fan, Z. Li, N. Jiang, J. Wang, B. Dou, S. Sun, F. Song,
X. Peng, Org. Biomol. Chem. 2013, 11, 555-558.
[6] X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, K. D. Belfield, J. Org. Chem.
2013, 78, 9153-9160.
[7] S. Kolemen, M. Işık, G. M. Kim, D. Kim, H. Geng, M. Buyuktemiz, T.
Karatas, X.-F. Zhang, Y. Dede, J. Yoon, E. U. Akkaya, Angew. Chem. Int. Ed.
2015, 54, 5340-5344.
[8] T. Kowada, H. Maeda, K. Kikuchi, Chem. Soc. Rev. 2015, 44, 4953-4972.
This article is protected by copyright. All rights reserved.