ORGANIC
LETTERS
2004
Vol. 6, No. 1
23-25
Highly Selective Asymmetric Acetate
Aldol Reactions of an N-Acetyl
Thiazolidinethione Reagent
Yingchao Zhang, Andrew J. Phillips, and Tarek Sammakia*
Department of Chemistry and Biochemistry, UniVersity of Colorado,
Boulder, Colorado 80309-0215
Received October 16, 2003
ABSTRACT
A highly diastereoselective acetate aldol reaction that uses a tert-leucine-derived thiazolidinethione auxiliary and dichlorophenylborane has
been developed. The reaction proceeds in excellent yields and with high diastereoselectivities (drs range from 9.5:1 to >100:1).
In 1981, Evans reported a highly diastereoselective asym-
metric aldol reaction using boron enolates of N-acyloxazo-
lidinones.1 Since that time, chiral auxiliary-based aldol bond
constructions have been widely used for accessing single
isomers of â-hydroxy acid derivatives,2 and intensive re-
search has given rise to a large number of chiral auxiliaries
that can produce syn- or anti-propionate aldol units in high
yields and with excellent diastereoselectivities.3 However,
the development of an auxiliary-based stereoselective acetate
aldol reaction has been a more elusive goal. Many of the
auxiliaries that work well for propionate aldol reactions give
minimal diastereoselection for acetate aldol reactions.4
Although successful methods in this area using chiral acetate
enolates of tin (Nagao-Fujita),5 lithium (Braun and Yama-
moto),6 boron (Yan),7 and titanium (Yan, Urpi, and Phillips)8
are known, these methods have some shortcomings, including
the use of expensive reagents and metals, lower levels of
diastereoselectivity with aliphatic aldehydes, or the need for
extremely low reaction temperatures for satisfactory diaste-
reoselectivities. Furthermore, although the diastereoselec-
tivities for many of these processes are useful, they are
(4) For reviews of asymmetric acetate aldol reactions, see: (a) Masamune,
S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985,
24, 1. M. Braun, Angew. Chem., Int. Ed. Engl. 1987, 26, 24. For selected
recent references to other auxiliary-based asymmetric acetate aldol reactions,
see: (b) Oppolzer, W.; Starkemann, C. Tetrahedron Lett. 1992, 33, 2439.
(c) Helmchen, G.; Leikauf, U.; Taufer-Kno¨pfel, I. Angew. Chem., Int. Ed.
Engl. 1985, 24, 874. (d) Bond, S.; Perlmutter, P. J. Org. Chem. 1997, 62,
6397. (e) Palomo, C.; Gonzalez, A.; Garcia, J. M.; Landa, C.; Oliarbide,
M.; Rodr´ıguez, S.; Linden, A. Angew. Chem., Int. Ed. 1998, 37, 180. For
approaches utilizing metal-based chirality, see: (f) Masamune, S.; Sato,
T.; Kim, B. M.; Wollmann, T. A. J. Am. Chem. Soc. 1986, 108, 8279. (g)
Duthaler, R. O.; Herold, P.; Lottenbach, W.; Oertle, K.; Riediker, M. Angew.
Chem., Int. Ed. Engl. 1989, 28, 495. (h) Corey, E. J.; Imwinkelried, R.;
Pikul, S.; Xiang, Y. B. J. Am. Chem. Soc. 1989, 111, 5493.
(5) (a) Nagao, Y.; Yamada, S.; Kumagai, T.; Ochiai, M.; Fujita, E. J.
Chem. Soc., Chem. Commun. 1985, 1418. (b) Nagao, Y.; Hagiwara, Y.;
Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. J. Org. Chem.
1986, 51, 2391.
(6) (a) Braun, M.; Devant, R. Tetrahedron Lett. 1984, 25, 5031. (b)
Devant, R.; Mahler, U.; Braun, M. Chem. Ber. 1988, 121, 397 and references
therein. (c) Saito, S.; Hatanaka, K.; Kano, T.; Yamamoto, H. Angew. Chem.,
Int. Ed. 1998, 37, 3378.
(7) Yan, T. H.; Hung, H. C.; Hung, A. W.; Lee, H. C.; Chang, C. S. J.
Org. Chem. 1994, 59, 8187.
(8) (a) Yan, T. H.; Hung, A. W.; Lee, H. C.; Chang, C. S. Liu, W. H. J.
Org. Chem. 1995, 60, 3301. (b) Gonza´lez, AÄ .; Aiguade´, J.; Urp´ı, F.;
Vilarrasa, J. Tetrahedron Lett. 1996, 37, 8949. (c) Guz, N. R.; Phillips, A.
J. Org. Lett. 2002, 4, 2253.
(1) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103,
2127.
(2) For selected reviews on the aldol reaction, see: (a) Evans, D. A.;
Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1. (b) Arya, P.;
Qin, H. P. Tetrahedron 2000, 56, 917. (c) Cowden, C. J.; Paterson, I. Org.
React. 1997, 51, 1. (d) Machajewski, T. D.; Wong, C. H. Angew. Chem.,
Int. Ed. 2000, 39, 1353. (e) Carreira, E. M. In Modern Carbonyl Chemistry;
Otera, J., Ed., Wiley: New York, 2000.
(3) (a) For selected examples, see: Crmmins, M. T.; King, B. W.; Tabet,
E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894 and references therein.
Abiko, A.; Liu, J.-F.; Masamune, S. J. Am. Chem. Soc. 1997, 119, 2586.
Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem.
Soc. 2002, 124, 392. Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow,
J. S. Org. Lett. 2002, 4, 1127. (b) For recent advances in asymmetric
synthesis with chiral imide auxiliaries, see: Evans, D. A.; Shaw, J. T.
Actualite´ Chim. 2003, 35.
10.1021/ol036020y CCC: $27.50 © 2004 American Chemical Society
Published on Web 12/05/2003