Organic Letters
Letter
(
(
3) Ambrogelly, A.; Palioura, S.; So
4) Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis:
̈
ll, D. Nat. Chem. Biol. 2007, 3, 29.
Scheme 4. Hydrolysis of 3i Leading to 5
Construction of Chiral Molecules Using Amino Acids; Wiley: New
York, 1987.
(
5) (a) Naj
b) Constantinou-Kokotou, V.; Kokotos, G. Amino Acids 1999, 16,
73.
6) (a) Gro
Feng, X. Chem. Rev. 2011, 111, 6947 and references therein.
́
7) (a) Abellan, T.; Chinchilla, R.; Galindo, N.; Guillena, G.; Najera,
́
era, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584.
(
2
(
̈
ger, H. Chem. Rev. 2003, 103, 2795. (b) Wang, J.; Liu, X.;
(
́
C.; Sansano, J. M. Eur. J. Org. Chem. 2000, 2000, 2689. (b) Noisier, A.
F. M.; Harris, C. S.; Brimble, M. A. Chem. Commun. 2013, 49, 7744.
for details). Next, HPLC analysis of Rac-5 and 5 was performed
with CHIRALPAK QN-AX (QN07163) chiral column using
methanol/acetic acid/triethylamine (100:2:0.2) as the mobile
(
8) (a) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506.
b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656.
9) (a) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.;
(
(
Studer, M. Adv. Synth. Catal. 2003, 345, 103. (b) Tang, W.; Zhang, X.
Chem. Rev. 2003, 103, 3029.
(10) (a) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8,
3391. (b) Tran, L. D.; Daugulis, O. Angew. Chem., Int. Ed. 2012, 51,
5188. (c) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
for the details). In addition, single crystal of 5 was prepared, and
that deprotection of the phthalimido amino acids with hydrazine
2
005, 127, 13154. (d) Zhang, S.-Y.; Li, Q.; He, G.; Nack, W. A.; Chen,
G. J. Am. Chem. Soc. 2013, 135, 12135. (e) He, J.; Li, S.; Deng, Y.; Fu,
H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014,
343, 1216.
19
can get free amino acid without erosion of chirality.
(11) (a) Kerns, J. K.; Nie, H.; Bondinell, W.; Widdowson, K. L.;
In summary, we have developed a convenient, efficient, and
practical iron-catalyzed method for diastereoselective synthesis
of unnatural chiral α-(S)-amino acids with γ-quaternary
carbon centers. The protocol uses inexpensive iron salt as the
catalyst, readily available 2-phthaloyl acrylamide with (S)-4-tert-
butyloxazolidin-2-one chiral auxiliary and alkenes as the starting
materials, and phenylsilane as the reductant, and the reactions
were performed well in mixed solvent of 1,2-dichloroethane and
ethylene glycol at room temperature under nitrogen atmosphere.
The method shows some advantages including simple and wide
substrates, mild conditions, high diastereoselectivity, and easy
workup procedures. Therefore, the present method provides
a novel and valuable strategy for synthesis of diverse unnatural
chiral α-amino acids.
Yamashita, D. S.; Rahman, A.; Podolin, P. L.; Carpenter, D. C.; Jin, Q.;
Riflade, B.; Dong, X.; Nevins, N.; Keller, P. M.; Mitchell, L.;
Tomaszek, T. Bioorg. Med. Chem. Lett. 2011, 21, 4409. (b) Deboves,
H. J. C.; Grabowska, U.; Rizzo, A.; Jackson, R. F. W. J. Chem. Soc.,
Perkin Trans. 1 2000, 4284. (c) Filosa, R.; Fulco, M. C.; Marinozzi, M.;
Giacche,
Thomsen, C.; Christoffersen, C. T.; Pellicciari, R. Bioorg. Med. Chem.
009, 17, 242. (d) Jiang, S.; Li, P.; Lai, C. C.; Kelley, J. A.; Roller, P. P.
̀
N.; Macchiarulo, A.; Peduto, A.; Massa, A.; de Caprariis, P.;
2
J. Org. Chem. 2006, 71, 7307. (e) Risgaard, R.; Nielsen, S. D.; Hansen,
K. B.; Jensen, C. M.; Nielsen, B.; Traynelis, S. F.; Clausen, R. P. J. Med.
Chem. 2013, 56, 4071.
(
12) Carrillo-Marquez, T.; Caggiano, L.; Jackson, R. F. W.;
Grabowska, U.; Rae, A.; Tozer, M. J. Org. Biomol. Chem. 2005, 3, 4117.
13) (a) Bauer, I.; Knolker, H.-J. Chem. Rev. 2015, 115, 3170.
(
̈
(b) Plietker, B. Topics in Organometallic Chemistry-Iron Catalysis:
Fundamentals and Applications; Springer Verlag: Berlin, 2011.
ASSOCIATED CONTENT
Supporting Information
(
c) Plietker, B. Iron Catalysis in Organic Chemistry; Wiley-VCH:
Weinheim, Germany, 2008.
14) (a) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Nature
■
*
S
(
2
2
014, 516, 343. (b) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc.
014, 136, 1304.
spectra of obtained compounds (PDF)
̃
(15) For a reviewers, see: (a) Acena, J. L.; Sorochinsky, A. E.;
Soloshonok, V. Amino Acids 2014, 46, 2047. and references therein.
For the selected papers, see: (b) Huang, T.; Keh, C. C. K.; Li, C.-J.
Chem. Commun. 2002, 2440. (c) Navarre, L.; Martinez, R.; Genet, J.-
P.; Darses, S. J. Am. Chem. Soc. 2008, 130, 6159. (d) Tong, B. M. K.;
Chiba, S. Org. Lett. 2011, 13, 2948. (e) Miyabe, H.; Asada, R.;
Takemoto, Y. Tetrahedron 2005, 61, 385.
AUTHOR INFORMATION
■
*
(
16) (a) Yim, A.-M.; Vidal, Y.; Viallefont, P.; Martinez, J.
Notes
Tetrahedron: Asymmetry 2002, 13, 503. (b) Gasanov, R. G.;
Ilinskaya, L. V.; Misharin, M. A.; Maleev, V. I.; Raevski, N. I.;
Ikonnikov, N. S.; Orlova, S. A.; Kuzmina, N. A.; Belokon, Y. N. J.
Chem. Soc., Perkin Trans. 1 1994, 3343.
(17) (a) Sibi, M. P.; Ji, J. J. Org. Chem. 1996, 61, 6090. (b) Sibi, M. P.;
Porter, N. A. Acc. Chem. Res. 1999, 32, 163.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors wish to thank the National Natural Science
Foundation of China (Grant Nos. 21372139 and 21221062),
and Shenzhen Sci & Tech Bureau (CXB201104210014A) for
financial support.
(
18) Liu, D.; Liu, C.; Li, H.; Lei, A. Angew. Chem., Int. Ed. 2013, 52,
453.
19) (a) Yajima, T.; Yamaguchi, K.; Hirokane, R.; Nogami, E. J.
4
(
Fluorine Chem. 2013, 150, 1. (b) Mulzer, J.; Angermann, A.; Schubert,
B.; Seilz, C. J. Org. Chem. 1986, 51, 5294. (c) Thayumanavan, R.;
Tanaka, F.; Barbas, C. F., III Org. Lett. 2004, 6, 3541.
REFERENCES
■
(
1) Hughes, A. B. Amino Acids, Peptides and Proteins in Organic
Chemistry, Analysis and Function of Amino Acids and Peptides; Wiley,
Hoboken, 2013.
(
2) Hughes, A. B. Amino Acids, Peptides and Proteins in Organic
Chemistry; Wiley-VCH, Weinheim, 2009.
D
Org. Lett. XXXX, XXX, XXX−XXX