10.1002/anie.201914836
Angewandte Chemie International Edition
[9]
a) H. Yao, J. Lan, C. Li, H. Shi, J.-P. Brosseau, H. Wang, H. Lu, C. Fang,
Y. Zhang, L. Liang, X. Zhou, C. Wang, Y. Xue, Y. Cui, J. Xu, Nat. Biomed.
Eng. 2019, 3, 306; b) Y. Yang, J.-M. Hsu, L. Sun, L.-C. Chan, C.-W. Li, J.
L. Hsu, Y. Wei, W. Xia, J. Hou, Y. Qiu, M.-C. Hung, Cell Res. 2019, 29,
83.
[16] a) M. Pant, N. C. Bal, M. Periasamy, Trends Endocrinol. Metab. 2016, 27,
881; b) C. Toyoshima, S. Iwasawa, H. Ogawa, A. Hirata, J. Tsueda, G.
Inesi, Nature 2013, 495, 260; c) A. M. Winther, M. Bublitz, J. L. Karlsen, J.
V. Moller, J. B. Hansen, P. Nissen, M. J. Buch-Pedersen, Nature 2013,
495, 265.
[10] N. Amara, I. T. Foe, O. Onguka, M. Garland, M. Bogyo, Cell Chem. Biol.
2019, 26, 35.
[17] C. Montigny, P. Decottignies, P. Le Marechal, P. Capy, M. Bublitz, C.
Olesen, J. V. Moller, P. Nissen, M. le Maire, J. Biol. Chem. 2014, 289,
33850.
[11] G. Kragol, M. Lumbierres, J. M. Palomo, H. Waldmann, Angew. Chem. Int.
Ed. 2004, 43, 5839; b) J. M. Palomo, M. Lumbierres, H. Waldmann, bierres,
J. M. Palomo, H. Waldmann, Angew. Chem. Int. Ed. 2006, 45, 477; c) F.
Rosi, G. Triola, Methods Mol. Biol. 2013, 1047, 161.
[18] T.Barbot, C. Montigny, P. Decottignies, M. le Maire, C. Jaxel, N. Jamin,
V. Beswick in Regulation of Ca2+-ATPases, V-ATPases and F-ATPases,
(Eds: S. Chakraborti and N. S. Dhalla) , Springer International Publishing,
Switzerland, 2016, pp. 153-186.
[12] a) A. D. de Araujo, J. M. Palomo, J. Cramer, M. Kohn, H. Schroder, R.
Wacker, C. Niemeyer, K. Alexandrov, H. Waldmann, Angew. Chem. Int.
Ed. 2005, 45, 296; b) O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C.
Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, P. I.
Bastiaens, Science 2005, 307, 1746; c) T. Mejuch, H. Waldmann,
Bioconjugate Chem. 2016, 27, 1771, and references therein.
[19] E. T. Williams, P. W. R. Harris, M. A. Jamaluddin, K. M. Loomes, D. L.
Hay, M. A. Brimble, Angew. Chem. Int. Ed. 2018, 57, 11640.
[20] a) M. Paradis-Bas, J. Tulla-Puche, F. Albericio, Chem. Soc. Rev. 2016, 45,
631; b) Y.-C. Huang, Y.-M. Li, Y. Chen, M. Pan, Y.-T. Li, L. Yu, Q.-X. Guo,
L. Liu, Angew. Chem. Int. Ed. 2013, 52, 4858; c) M. T. Jacobsen, M. E.
Petersen, X. Ye, M. Galibert, G. H. Lorimer, V. Aucagne, M. S. Kay, J. Am.
Chem. Soc. 2016, 138, 11775; d) S. K. Maity, G. Mann, M. Jbara, S. Laps,
G. Kamnesky, A. Brik, Org. Lett. 2016, 18, 3026; e) S. Tsuda, M. Mochizuki,
H. Ishiba, K. Yoshizawa-Kumagaye, H. Nishio, S. Oishi, T. Yoshiya,
Angew. Chem. Int. Ed. 2018, 57, 2105.
[13] The native protein samples with amide bonds at the ligation site are more
readily acceptable and used for better understanding the molecular basis
of function as discussed in references 1b and 3e. Besides, increasing
evidences showed that a tiny tweak of the thioester bond on a protein may
lead to a big change on its structure and function: T. Sztain, A. Patel, D. J.
Lee, T. D. Davis, J. A. McCammon, M. D. Burkart, Angew. Chem. Int. Ed.
2019, 58, DOI: 10.1002/anie.201903815. Recently, only one native N-
palmitoylated example, the N-palmitoylated Sonic Hedgehog protein with
an amide bond but not a thioester bond, was synthesized by NCL method:
J. Pala-Pujadas, F. Albericio, J. B. Blanco-Canosa, Angew. Chem. Int. Ed.
2018, 57, 16120.
[21] a) J.-S. Zheng, M. Yu, Y.-K. Qi, S. Tang, F. Shen, Z.-P. Wang, L. Xiao, L.
Zhang, C.-L. Tian, L. Liu, J. Am. Chem. Soc. 2014, 136, 3695; b) J.-S.
Zheng, Y. He, C. Zuo, X.-Y. Cai, S. Tang, Z. A. Wang, L.-H. Zhang, C.-L.
Tian, L. Liu, J. Am. Chem. Soc. 2016, 138, 3553; c) J.-B. Li, S. Tang, J.-
S. Zheng, C.-L. Tian, L. Liu, Acc. Chem. Res. 2017, 50, 1143; d) B. Zhang,
Q. Deng, C. Zuo, B. Yan, C. Zuo, X.-X. Cao, T. F. Zhu, J.-S. Zheng, L. Liu,
Angew. Chem. Int. Ed. 2019, 58, 12231.
[14] The chemical synthesis of human SLN isoforms without S-palmitoylation
has been reported previously: a) S. Hellstern, S. Pegoraro, C. B. Karim, A.
Lustig, D. D. Thomas, L. Moroder, J. Engel, J Biol Chem 2001, 276, 30845;
b) A. Mascioni, C. Karim, G. Barany, D. D. Thomas, G. Veglia,
Biochemistry 2002, 41, 475. c) Previously, using the purified non-
[22] S. Tang, C. Zuo, D.-L. Huang, X.-Y. Cai, L.-H. Zhang, C.-L. Tian, J.-S.
Zheng, L. Liu, Nat. Protoc. 2017, 12, 2554.
[23] a) R. J. Brea, C. M. Cole, N. K. Devaraj, Angew. Chem. Int. Ed. 2014, 53,
14102; b) R. J. Brea, C. M. Cole, B. R. Lyda, L. Ye, R. S. Prosser, R. K.
Sunahara, N. K. Devaraj, J. Am. Chem. Soc. 2017, 139, 3607; c) A. K.
Rudd, R. J. Brea, N. K. Devaraj, J. Am. Chem. Soc. 2018, 140, 17374.
[24] M. A. DeWit, E. R. Gillies, Org. Biomol. Chem. 2011, 9, 1846.
[25] P. Palladino, D. A. Stetsenko, Org. Lett. 2012, 14, 6346.
[26] a) R. J. Sugrue, R. B. Belshe, A. J. Hay, Virology 1990, 179, 51; b) L. J.
Holsinger, M. A. Shaughnessy, A. Micko, L. H. Pinto, R. A. Lamb, J. Virol.
1995, 69, 1219; c) W. C. Su, W. Y. Yu, S. H. Huang, M. M. C. Lai, J. Virol.
2018, 92, e01972.
palmitoylated peptide as substrate for
a direct S-palmitoylation by
palmitoyl-chloride was reported under TFA conditions: E. Yousefi-
Salakdeh, J. Johansson, R. Strömberg, Biochem. J. 1999, 343, 557.
However, this method is not suitable for the synthesis of S-palm SLN or
S-palm M2 because our model reaction indicated that the fatty acyl
chloride can react with not only the target thiol groups, but also other
nucleophilic groups, such as the side-chain hydroxyl groups of Ser and
Tyr (Supplementary Fig. S5).
[15] a) A. Odermatt, S. Becker, V. K. Khanna, K. Kurzydlowski, E. Leisner, D.
Pette, D. H. MacLennan, J. Biol. Chem. 1998, 273, 12360; b) N. C. Bal, S.
K. Maurya, D. H. Sopariwala, S. K. Sahoo, S. C. Gupta, S. A. Shaikh, M.
Pant, L. A. Rowland, E. Bombardier, S. A. Goonasekera, A. R. Tupling, J.
D. Molkentin, M. Periasamy, Nat. Med. 2012, 18, 1575.
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff)
6
This article is protected by copyright. All rights reserved.