Articles
NATure CHeMisTry
2
18. Um, J., Yun, H. & Shin, S. Cross-coupling of Meyer–Schuster intermediates
C(sp) –C(sp) bond, followed by reductive elimination that deliv-
under dual gold–photoredox catalysis. Org. Lett. 18, 484–487 (2016).
ers the benzofuran product. The process described in this Article
enables the oxidative addition–reductive elimination pathway to be
used with organogold intermediates and, because other nucleophilic
1
9. Huang, L., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Photosensitizer-free
visible light mediated gold catalyzed 1,2-difunctionalization of alkynes.
Angew. Chem. Int. Ed. 55, 4808–4813 (2016).
and electrophilic partners are competent, it opens new avenues in 20. Tlahuext-Aca, A., Hopkinson, M. N., Garza-Sanchez, R. A. & Glorius, F.
Alkyne difunctionalization by dual gold/photoredox catalysis. Chem. Eur. J
the field of excited-state gold catalysis.
2
2, 5909–5913 (2016).
2
1. Alcaide, B., Almendros, P., Busto, E. & Luna, A. Domino Meyer–Schuster/
arylation reaction of alkynols or alkynyl hydroperoxides with diazonium
salts promoted by visible light under dual gold and ruthenium catalysis.
Adv. Synth. Catal. 358, 1526–1533 (2016).
2. Cornilleau, T., Hermange, P. & Fouquet, E. Gold-catalysed cross-coupling
between aryldiazonium salts and arylboronic acids: probing the
usefulness of photoredox conditions. Chem. Commun. 52,
Methods
General procedure for alkynylative cyclization of o-alkynylphenols with
iodoalkynes. A Schlenk tube was equipped with a magnetic stirring bar and
charged with the photocatalyst [Ir-F](1mol%) before the addition of the gold(ꢀ)
2
3 2 3
complex [Au-CF ] (5mol%), K CO (2.5equiv), 1,10-phenanthroline (10mol%),
the appropriate iodoalkyne 2 (0.15mmol) and o-alkynylphenol derivative 1
(
0.1mmol), with MeCN (2ml). ꢁe mixture was degassed using three freeze
1
0040–10043 (2016).
pump–thaw cycles and purged with Ar, then irradiated for 16h (unless otherwise
stated) with blue LED light (see Supplementary Section VI for set-up). ꢁe stirring
2
2
2
3. Gauchot, V. & Lee, A.-L. Dual gold photoredox C(sp2)-C(sp2) cross
couplings – development and mechanistic studies. Chem. Commun. 52,
2
speed was ≥1,200r.p.m. ꢁe reaction was quenched with Et O (3ml) and a 2M
1
0163–10166 (2016).
HCl solution (3ml) and the solution was then extracted by Et
2
O (3×5ml). ꢁe
4. Gauchot, V., Sutherland, D. R. & Lee, A.-L. Dual gold and photoredox
catalysed C–H activation of arenes for aryl–aryl cross couplings. Chem. Sci 8,
combined organic layer was dried over MgSO , ꢂltered and concentrated under
4
reduced pressure to give the crude product. ꢁe residue was puriꢂed by ꢃash
2
885–2889 (2017).
chromatography (FC) on silica gel to aꢄord 3.
5. Tlahuext-Aca, A., Hopkinson, M. N., Daniliuc, C. G. & Glorius, F. Oxidative
addition to gold(I) by photoredox catalysis: straightforward access to
diverse (C,N)- cyclometalated gold(III) complexes. Chem. Eur. J 22,
11587–11592 (2016).
Data availability
Crystallographic data for the structures reported in this Article have been
the findings of this study are available within the Article and the Supplementary
Information, or from the corresponding authors on reasonable request.
26. Zhang, Q., Zhang, Z.-Q., Fu, Y. & Yu, H.-Z. Mechanism of the visible
light-mediated gold-catalyzed oxyarylation reaction of alkenes. ACS Catal 6,
798–808 (2016).
27. Zhou, Q.-Q., Zou, Y.-Q., Lu, L.-Q. & Xiao, W.-J. Visible-light-induced organic
photochemical reactions through energy-transfer pathways. Angew. Chem. Int.
Ed. 58, 1586–1604 (2019).
2
8. Strieth-Kalthoꢄ, F., James, J. M., Teders, M., Pitzer, L. & Glorius, F. Energy
transfer catalysis mediated by visible light: principles, applications, directions.
Chem. Soc. Rev. 47, 7190–7202 (2018).
Received: 5 September 2018; Accepted: 18 June 2019;
Published: xx xx xxxx
2
9. de Haro, T. & Nevado, C. Gold-Catatalyzed Ethynylation of Arenes. J. Am.
Chem. Soc. 132, 1512–1513 (2010).
ꢂeferences
1.
2.
3.
Dorel, R. & Echavarren, A. M. Gold(I)-catalyzed activation of alkynes for the
construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).
Fensterbank, L. & Malacria, M. Molecular complexity from polyunsaturated
substrates: the gold catalysis approach. Acc. Chem. Res. 47, 953–965 (2014).
Harris, R. J. & Widenhoefer, R. A. Gold carbenes, gold-stabilized
carbocations, and cationic intermediates relevant to gold-catalysed enyne
cycloaddition. Chem. Soc. Rev. 45, 4533–4551 (2016).
30. Hopkinson, M. N., Ross, J. E., Giuꢄredi, G. T., Gee, A. D. & Gouverneur, V.
Gold-catalyzed cascade cyclization−oxidative alkynylation of allenoates.
Org. Lett. 12, 4904–4907 (2010).
31. Li, Y., Brand, J. P. & Waser, J. Gold-catalyzed regioselective synthesis of
2- and 3-alkynyl furans. Angew. Chem. Int. Ed. 52, 6743–6747 (2013).
32. Xia, Z., Khaled, O., Mouriès-Mansuy, V., Ollivier, C. & Fensterbank, L. Dual
photoredox/gold catalysis arylative cyclization of o-alkynylphenols with
aryldiazonium salts: a ꢃexible synthesis of benzofurans. J. Org. Chem. 81,
7182–7190 (2016).
4
5
6
.
.
.
Wang, W., Hammond, G. B. & Xu, B. Ligand eꢄects and ligand design in
homogeneous gold(I) catalysis. J. Am. Chem. Soc. 134, 5697–5705 (2012).
Liu, L.-P. & Hammond, G. Recent advances in the isolation and reactivity of
organogold complexes. Chem. Soc. Rev. 41, 3129–3139 (2012).
33. Joost, M., Amgoune, A. & Bourissou, D. Reactivity of gold complexes
towards elementary organometallic reactions. Angew. Chem. Int. Ed. 54,
15022–15045 (2015).
Hashmi, A. S. K. et al. Scope and limitations of palladium-catalyzed
cross-coupling reactions with organogold compounds. Adv. Synth. Catal. 352,
34. Levin, M. D. & Toste, F. D. Gold-catalyzed allylation of aryl boronic acids:
accessing cross-coupling reactivity with gold. Angew. Chem. Int. Ed. 53,
6211–6215 (2014).
1307–1314 (2010).
7.
Garcia-Dominguez, P. & Nevado, C. Au−Pd bimetallic catalysis: the
importance of anionic ligands in catalyst speciation. J. Am. Chem. Soc. 138,
35. Asomoza-Solis, E. O., Rojas-Ocampo, J., Toscano, R. A. & Porcel, S.
Arenediazonium salts as electrophiles for the oxidative addition of gold(I).
Chem. Commun. 52, 7295–7298 (2016).
3266–3269 (2016).
8
9
1
.
Zheng, Z., Wang, Z., Wang, Y. & Zhang, L. Au-catalysed oxidative cyclisation.
Chem. Soc. Rev. 45, 4448–4458 (2016).
36. Huang, L., Rominger, F., Rudolph, M. & Hashmi, A. S. K. A general access
to organogold(III) complexes by oxidative addition of diazonium salts.
Chem. Commun. 52, 6435–6438 (2016).
.
Hopkinson, M. N., Tlahuext-Aca, A. & Glorius, F. Merging visible light
photoredox and gold catalysis. Acc. Chem. Res. 49, 2261–2272 (2016).
0. Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox
catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am.
Chem. Soc. 135, 5505–5508 (2013).
37. Winston, M. S., Wolf, W. J. & Toste, F. D. Photoinitiated oxidative addition of
CF I to gold(I) and facile aryl-CF reductive elimination. J. Am. Chem. Soc.
3
3
136, 7777–7782 (2014).
11. Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/
photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium
salts. Chem. Sci 7, 89–93 (2016).
12. Shu, X.-Z., Zhang, M., Frei, H. & Toste, F. D. Dual visible light photoredox
and gold-catalyzed arylative ring expansion. J. Am. Chem. Soc. 136,
38. Serra, J., Parella, T. & Ribas, X. Au(III)-aryl intermediates in oxidant-free
C-N and C-O cross-coupling catalysis. Chem. Sci. 8, 946–952 (2017).
39. Joost, M. et al. Oxidative addition of carbon–carbon bonds to gold.
Angew. Chem. Int. Ed. 54, 14512–14516 (2015).
40. Joost, M. et al. Facile oxidative addition of aryl iodides to gold(I) by
ligand design: bending turns on reactivity. J. Am. Chem. Soc. 136,
14654–14657 (2014).
41. Zeineddine, A. et al. Rational development of catalytic Au(I)/Au(III)
arylation involving mild oxidative addition of aryl halides. Nat. Commun. 8,
565 (2017).
42. Harper, M. J. et al. Oxidative addition, transmetalation, and reductive
elimination at a 2,2-bipyridyl-ligated gold center. J. Am. Chem. Soc. 140,
4440–4445 (2018).
5844–5847 (2014).
1
3. Kim, S., Rojas-Martin, J. & Toste, F. D. Visible light-mediated gold-catalysed
carbon(sp2)–carbon(sp) cross-coupling. Chem. Sci. 7, 85–88 (2016).
4. Levin, M. D., Kim, S. & Toste, F. D. Photoredox catalysis unlocks single-
electron elementary steps in transition metal catalyzed cross-coupling. ACS
Cent. Sci. 2, 293–301 (2016).
1
1
1
1
5. Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in
photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
6. Twilton, J., Le, C., Zhang, P., Evans, R. W. & MacMillan, D. W. C. ꢁe merger
of transition metal and photocatalysis. Nat. Rev. Chem 1, 0052 (2017).
7. Patil, D. V., Yun, H. & Shin, S. Catalytic cross-coupling of vinyl golds with
diazonium salts under photoredox and thermal conditions. Adv. Synth. Catal.
43. Martelli, G., Spagnolo, P. & Tiecco, M. Homolytic aromatic substitution by
phenylethynyl radicals. J. Chem. Soc. B 0, 1413–1418 (1970).
44. Xie, J. et al. A highly eꢅcient gold–catalyzed photoredox α–C(sp3)–H
alkynylation of tertiary aliphatic amines with sunlight. Angew. Chem. Int. Ed.
54, 6046–6050 (2015).
3
57, 2622–2628 (2015).