10.1002/ejoc.201800542
European Journal of Organic Chemistry
FULL PAPER
MgSO4, filtered, and concentrated. The crude product was purified by
flash chromatography using silica gel (hexanes/Et2O).
m) S. Das, C. G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 2017, 56,
11554-11558.
[9]
M. E. Kuehne, J. C. King, J. Org. Chem. 1973, 38, 304-311.
[10] A. Pereira, Y. Champouret, C. Martín, E. Álvarez, M. Etienne, T. R.
Belderraín, P. J. Perèz, Chem. Eur. J. 2015, 21, 9769-9775.
[11] S. Muthusamy, P. Srinivasan, Tetrahedron Lett. 2006, 47, 6297-6300.
[12] P. M. Pihko, I. Majander, A. Erkkilä, Asymmetric Organocatalysis, (Ed.:
B. List), 1st edn., Springer, 2010, pp. 145-200.
General procedure for α-di-functionalization of ketones – method B:
To a 10 mL vial equipped with stir bar a photocatalyst (1 mol%) was
added and dissolved in a mixture of DMSO and buffer pH 7 (mixture 9:1,
5 mL). The vial was sealed and purged with argon for 5 min. Then ketone
(1 equiv., 0.25 mmol), pyrrolidine (0.4 equiv., 0.1 mmol) and EDA (3
equiv., 0.75 mmol) were added. The reaction mixture was stirred under
[13] D. A. Nagib, M. E. Scott, D. W. C. McMillan, J. Am. Chem. Soc. 2009,
131, 10875-10877.
[14] H.-W. Shih, M. N. Vander Wal, R. L. Grange, D. W. C. MacMillan, J. Am.
Chem. Soc. 2010, 132, 13600-13603.
light irradiation (LED525nm, 25 ̊C) for 7 h. The light was turned off, the
reaction mixture was diluted with Et2O, and washed with 1N HCl. The
aqueous phase was extracted with Et2O three times. The combined
organic phases were washed with saturated NaHCO3aq, brine, dried over
MgSO4, filtered, and concentrated. The crude product was purified by
flash chromatography using silica gel (hexanes/Et2O).
[15] D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77-80.
[16] For Photoredox catalysis see reviews: a) C. K. Prier, D. A. Rankic, D.
W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363. b) K. L. Skubi, T.
R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035-10074. c) J. W.
Tucker, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 1617-1622. d) J.
J. Douglas, M. J. Sevrin, C. R. J. Stephenson, Org. Process Res. Dev.
2016, 20, 1134-1147. e) D. Staveness, I. B. Bosque, C. R. J.
Stephenson, Acc. Chem. Res. 2016, 49, 2295-2306. f) K. Teegardin, J.
I. Day, J. Chan, J. Weaver, Org. Process Res. Dev. 2016, 20, 1156-
1163. g) D. A. Nicewicz, T. M. Nguyen, ACS Catal 2014, 4, 355-360. h)
M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem., 2016, 81,
6898-6926. h) J. Twilton, C. C. Le, P. Zhang, M. H. Shaw, R. W. Evans,
D. W. C. MacMillan, Nature Reviews Chemistry 2017, 1, 0052. i) Y.-Q.
Zou, F. M. Hörmann, T. Bach, Chem. Soc. Rev. 2018, DOI:
10.1039/C7CS00509A.
Acknowledgements
The support of the National Science Center (K.R.-J.,
PRELUDIUM Grant UMO-2016/21/N/ST5/03353, D.G., M. K.
OPUS Grant no. 2016/21/B/ST5/03169 is gratefully
acknowledged. The computational resources used in this work
were provided by ICM UW as a part of the G14-6 grant.
Calculations have been carried out using resources provided by
Wroclaw Centre for Networking and Supercomputing
[17] R. Cano, A. Zakarian, G. P. McGlacken, Angew. Chem. Int. Ed. 2017,
56, 9278-9290.
[18] Y. Zhu, L. Zhang, S. Luo, J. Am. Chem. Soc. 2014, 136, 14642-14645.
[19] a) L. Woźniak, J. J. Murphy, P. Melchiorre, J. Am. Chem. Soc. 2015,
137, 5678-5681. b) E. Arceo, A. Bahamonde, G. Bergonzini, P.
Melchiorre, Chem. Sci. 2014, 5, 2438-2442.
Keywords: diazo compounds • photoredox catalysis • alkylation
of ketones • porphyrins
[20] a) H. Huo, X. Shen, C. Wang, L. Zhang, P. Rëse, L.-A. Chen, K. Harms,
M. Marsch, G. Hilt, E. Meggers, Nature 2014, 515, 100-103. b) C.
Wang, Y. Zheng, H. Huo, P. Rëse, L. Zhang, K. Harms, G. Hilt, E.
Meggers, Chem. Eur. J. 2015, 21, 7355-7359.
[1]
a) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A.
McKervey, Chem. Rev. 2015, 115, 9981-10080. b) T. Ye, M. A.
McKervey, Chem. Rev. 1994, 94, 1091-1160.
[21] a) K. M. Kadish, M. M. Morrison, Bioinorg. Chem. 1977, 7, 107-115. b)
K. M. Kadish, E. Van Caemelbecke, J. Solid State Electrochem. 2003,
7, 254-258. c) R. F. X. Williams, P. Hambright, Bioinorg. Chem. 1978, 9,
537-544. d) Y. Cui, L. Zeng, Y. Fang, J. Zhu, C. H. Devillers, D. Lucas,
N. Desbois, C. P. Gros, K. M. Kadish, ChemElectroChem 2016, 3, 228-
241. e) Y.-J. Tu, H. C. Cheng, I. Chao, C.-R. Cho, R.-J. Cheng, Y. O.
Su, J. Phys. Chem. A 2012, 116, 1632-1637. f) S. Xue, Z. Ou, L. Ye, G.
Lu, Y. Fang, X. Jiang, K. M. Kadish, Chem. Eur. J. 2015, 21, 2651-2661.
g) Y. Fang, P. Bhyrappa, Z. Ou, K. M. Kadish, Chem. Eur. J. 2014, 20,
524-532. h) K. M. Kadish, M. M. Morrison, J. Am. Chem. Soc. 1976, 98,
3326-3328.
[2]
[3]
Z. Wang, A. G. Herraiz, A. M. Del Hoyo, M. G. Suero, Nature 2018, 554,
86-91.
a) H. D. Roth, M. L. Manion, J. Am. Chem. Soc. 1975, 97, 779-783. b)
H. D. Roth, Acc. Chem. Res. 1977, 10, 86-91.
[4]
[5]
R. A. Moss, U.-H. Dolling, J. Am. Chem. Soc. 1971, 93, 951-960.
R. P. L’ꢁsperance, T. M. Ford, M. Jones, J. Am. Chem. Soc. 1988, 110,
209-213.
[6]
a) K. Rybicka-Jasińska, Ł. W. Ciszewski, D. Gryko, Adv. Synth. Catal.
2016, 358, 1671-1678. b) K. Rybicka-Jasińska, W. Shan, K. Zawada, K.
M. Kadish, D. Gryko, J. Am. Chem. Soc. 2016, 138, 15451-15458.
X. Huang, R. D. Webster, K. Harms, E. Meggers, J. Am. Chem. Soc.
2016, 138, 12636-12642.
[22] D. Sánchez, D. Bastida, J. Burés, C. Isart, O. Pineda, J. Vilarrasa, Org.
Lett. 2012, 14, 536-539.
[7]
[8]
[23] T. Bug, M. Hartnagel, C. Schlierf, H. Mayr, Chem. Eur. J. 2003, 9,
4068-4076.
a) H.-U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151-1196. b) M.
Yu, B. L. Pagenkopf, Tetrahedron, 2005, 61, 321-347. c) F. De Simone,
J. Waser, Synthesis 2009, 20, 3353-3374. d) F. De Nanteuil, F. De
Simone, R. Frei, F. Benfatti, E. Serrano, J. Waser, Chem. Commun.
2014, 50, 10912-10928. e) T. Schneider, J. Kaschel, D. B. Werz,
Angew. Chem. Int. Ed. 2014, 53, 5504-5523. f) M. A. Cavitt, L. H. Phun,
S. France, Chem. Soc. Rev. 2014, 43, 804-818. g) H. K. Grover, M. R.
Emmett, M. A. Kerr, Org. Biomol. Chem. 2015, 13, 655-671. h) L. K. B.
Garve, P. Barkawitz, P. G. Jones, D. B. Werz, Org. Lett. 2014, 16,
5804-5807. i) S. Das, C. G. Daniliuc, A. Studer, Org. Lett. 2016, 18,
5576-5579. j) J. Wallbaum, L. K. B. Garve, P. G. Jones, D. B. Werz,
Chem. Eur. J. 2016, 22, 18756-18759. k) J. Wallbaum, L. K. B. Garve,
P. G. Jones, D. B. Werz, Org. Lett. 2017, 19, 98-101. l) L. K. B. Garve,
P. G. Jones, D. B. Werz, Angew. Chem. Int. Ed. 2017, 56, 9226-9230.
[24] B. König, Eur. J. Org. Chem. 2017, 15, 1979-1981.
[25] Because of the irreversible electrochemical oxidation of the enamines
and the solvents used (DMSO/buffer), we do not have exact values for
the oxidation potentials in adopted in the reaction solvent
(DMSO/buffer). For acetonitrile, the voltammograms show peak
potentials about 0.49 V vs SCE for oxidation of enamines.
[26] M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426-5434.
[27] E. F. Petterson, T. D. Goddard, C. C. Huang, G. S. Couch, D. M.
Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605-
1612.
[28] S. Cabani, G. Conti, L. Lepordi, J. Chem. Trans. Faraday Soc. 1971, 67,
1933-1948.
[29] A. Osuka, K. Maruyama, J. Chem. Res. 1987, 9, 2401-2409.
This article is protected by copyright. All rights reserved.