1390
S. Superchi et al. / Tetrahedron: Asymmetry 13 (2002) 1385–1391
washed sequentially with saturated NH4Cl, and brine.
The organic layer was dried over anhydrous Na2SO4
and concentrated under vacuum. The recovered residue
was purified by column chromatography (SiO2;
petroleum ether/Et2O 95/5) affording pure (S)-1g as a
glassy white solid (193 mg, 74%). [h]2D0=+154 (c 1.0,
Maruoka, K. Org. Lett. 2001, 3, 1273; (q) Stranne, R.;
Vasse, J.-L.; Moberg, C. Org. Lett. 2001, 3, 2525; (r) Lu,
G.; Li, X.; Zhou, Z.; Chan, W. L.; Chan, A. S. C.
Tetrahedron: Asymmetry 2001, 12, 2147; (s) Ma, J.-A.;
Wang, L.-X.; Zhang, W.; Zhou, Q.-L. Tetrahedron:
Asymmetry 2001, 12, 2801; (t) Widhalm, M.; Nettekoven,
U.; Kalchhauser, H.; Mereiter, K.; Calhorda, M. J.;
Felix, V. Organometallics 2002, 21, 315; (u) Ooi, T.;
Uematsu, Y.; Kameda, M.; Maruoka, K. Angew. Chem.,
Int. Ed. 2002, 41, 1551.
1
CHCl3); H NMR (300 MHz, CDCl3): l 1.26 (s, 3H),
1.63 (s, 3H), 3.14 (d, 2H, J=12.6 Hz), 3.54 (d, 2H,
J=12.6 Hz), 6.3–6.7 (br s, 1H), 7.1–7.5 (m, 14H),
7.8–8.0 (m, 8H). Anal. calcd for C38H33NO: C, 87.83;
H, 6.40; N, 2.70; O, 3.08. Found: C, 87.68; H, 6.49; N,
2.66; O, 3.17%.
2. Mecca, T.; Superchi, S.; Giorgio, E.; Rosini, C. Tetra-
hedron: Asymmetry 2001, 12, 1225.
3. Superchi, S.; Mecca, T.; Giorgio, E.; Rosini, C. Tetra-
hedron: Asymmetry 2001, 12, 1235.
4.6. Typical procedure for the addition of diethylzinc to
arylaldehydes
4. (a) Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed.
Engl. 1991, 30, 49; (b) Soai, K.; Niwa, S. Chem. Rev.
1992, 92, 833; (c) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101,
757; (d) Dai, W.-M.; Zhu, H.-J.; Hao, X.-J. Tetrahedron:
Asymmetry 2000, 11, 2315 and references cited therein.
5. Goldfuss, B.; Houk, K. N. J. Org. Chem. 1998, 63, 8998.
6. Braun, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 519.
7. (a) Gingras, M.; Dubois, F. Tetrahedron Lett. 1999, 40,
1309; (b) Xiao, D.; Zhang, Z.; Zhang, X. Org. Lett. 1999,
1, 1679.
8. An e.e. increase of about 10% could appear, at a first
glance, as a limited success. However, it has to be noted
that an e.e. enhancement from 85 to 95% requires (see,
for instance: Izumi, Y.; Tai, A. Stereodifferentiating
Reactions; Academic Press: New York, 1977; Chapter 7,
p. 178.) a DDG* gain of about 1 kcal/mol, i.e. a large
energy difference. The e.e.s experimentally observed in
the ethylation of benzaldehyde in fact correspond to a
DDG* of 0.62 kcal/mol for 1a, 1.55 kcal/mol for 1d, and
2.13 kcal/mol for 1g, respectively. This means that 1g
gives rise to TSs having larger differences, in energy and
structure, with respect to those given by 1d and 1a.
9. See, for example: Paleo, M. R.; Cabeza, I.; Sardina, F. J.
J. Org. Chem. 2000, 65, 2108.
To a solution of the ligand (0.05 mmol) in dry toluene
(3 mL) under a nitrogen atmosphere at rt, was added a
solution of ZnEt2 in hexane (1.0 M, 1.25 mL, 1.25
mmol). The mixture was stirred for 30 min, then a
solution of the arylaldehyde (0.62 mmol) in dry toluene
(1.3 mL) was added. The mixture was monitored by
GC–MS analysis and when no more traces of the
aldehyde were detected the reaction was quenched by
addition of 10% aqueous HCl. The mixture was
extracted with Et2O and the organic phase was washed
with brine, and dried over anhydrous Na2SO4. After
evaporation of the solvent the recovered solid residue
was directly analyzed by GC–MS and HPLC.
Acknowledgements
Financial support from MURST (COFIN2000) and
Universita` della Basilicata (Potenza) is gratefully
acknowledged.
10. (a) Yamakawa, M.; Noyori, R. J. Am. Chem. Soc. 1995,
117, 6327; (b) Yamakawa, M.; Noyori, R. Organometal-
lics 1999, 18, 128; (c) Goldfuss, B.; Steigelmann, M.;
Khan, S. I.; Houk, K. N. J. Org. Chem. 2000, 65, 77; (d)
Vazquez, J.; Pericas, M. A.; Maseras, F.; Lledos, A. J.
Org. Chem. 2000, 65, 7303; (e) Goldfuss, B.; Steigelmann,
M.; Rominger, F. Eur. J. Org. Chem. 2000, 1785; (f)
Rasmussen, T.; Norrby, P.-O. J. Am. Chem. Soc. 2001,
123, 2464.
11. The sketches in Figs. 2 and 3, although based upon the
transition states calculated in Ref. 5, are just pictorial
representations. For nomenclature of TS’s, see Ref. 5.
12. Inspection of Fig. 2 shows a high steric crowding in the
syn-(R) and syn-(S) transition states, thereby suggesting
a high energy level for these structures. Therefore, their
influence on the reaction path can be considered negligi-
ble and they can be reasonably ruled out from our
discussion.
References
1. (a) Mazaleyrat, J. P.; Cram, D. J. J. Am. Chem. Soc.
1981, 103, 4585; (b) Hawkins, J. M.; Fu, G. C. J. Org.
Chem. 1986, 51, 2820; (c) Kanth, J. V. B.; Periasamy, M.
J. Chem. Soc., Chem. Commun. 1990, 1145; (d) Noyori,
R.; Suga, S.; Okada, S.; Kawai, K.; Kitamura, M.;
Oguni, N.; Hayashi, M.; Kaneko, T.; Masuda, Y. J.
Organomet. Chem. 1990, 382, 19; (e) Hawkins, J. M.;
Lewis, T. A. J. Org. Chem. 1994, 59, 649; (f) Kubota, H.;
Koga, K. Tetrahedron Lett. 1994, 35, 6689; (g) Wimmer,
P.; Widhalm, M. Tetrahedron: Asymmetry 1995, 6, 657;
(h) Kubota, H.; Koga, K. Heterocycles 1996, 42, 543; (i)
Rosini, C.; Tanturli, R.; Pertici, P.; Salvadori, P. Tetra-
hedron: Asymmetry 1996, 7, 2971; (j) Aggarwal, V. K.;
Wang, M. F. Chem. Commun. 1996, 191; (k) Rych-
novsky, S. D.; McLernon, T. L.; Rajapakse, H. J. Org.
Chem. 1996, 61, 1194; (l) Bourghida, M.; Widhalm, M.
Tetrahedron: Asymmetry 1998, 9, 1073; (m) Arroyo, N.;
Haslinger, U.; Mereiter, K.; Widhalm, M. Tetrahedron:
Asymmetry 2000, 11, 4207; (n) Ooi, T.; Kameda, M.;
Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519; (o) Ooi,
T.; Takeuki, M.; Kameda, M.; Maruoka, K. J. Am.
Chem. Soc. 2000, 122, 5228; (p) Ooi, T.; Doda, K.;
13. For a recent study on substituent effects, see: Ohga, T.;
Umeda, S.; Kawanami, Y. Tetrahedron 2001, 57, 4825.
14. Indirect evidence for such a chiral environment can be
1
also obtained from the H NMR spectra of 1f and 1g. In
fact, in both of these amino alcohols, the diastereotopic
methyl groups on the nitrogen-bearing carbon display in
1
the H NMR spectrum a very large signal separation, of