Catalysis Science & Technology
Paper
PcL. The modified sites were identified by MALDI-TOF-MS
and it was indicated that Tyr29 was critical for the improve-
ment of enantioselectivity catalyzed by PcL. Chemical modi-
fication in vitro is an effective method to modify a protein
and further to modulate its function. In addition, the investi-
gation confirms the crucial roles of a steric hindrance.
This cost-effective and environmentally friendly method is
promising for the resolution of chiral compounds in many
industrial fields.
19 Y. X. Wang, R. Vazques-Duhalt and M. A. Pichard, Curr.
Microbiol., 2002, 45, 77–87.
20 J. Q. Lai, Z. Li, Y. H. Lü and Z. Yang, Green Chem., 2011, 13,
1860–1868.
21 M. G. Kim, E. G. Lee and B. H. Chung, Process Biochem.,
2000, 35, 977–982.
22 S. I. Ueji, A. Ueda, H. Tanaka, K. Watanabe, T. Okamoto and
Y. Ebara, Biotechnol. Lett., 2003, 25, 83–87.
23 D. Bianchi, E. Bosetti, A. Bosetti, P. Cesti and Z. Fekete,
Tetrahedron: Asymmetry, 1993, 4, 777–782.
24 S. Sayin, E. Akoz and M. Yilmaz, Org. Biomol. Chem.,
2014, 12, 6634–6642.
Acknowledgements
25 X. Meng, L. Guo, G. Xu, J. P. Wu and L. R. Yang, J. Mol.
Catal. B: Enzym., 2014, 109, 109–115.
26 P. Grochulsh, Y. Li, J. D. Schrag, F. Bouthillier, P. Smith, D.
Harrison, B. Rubin and M. Cygler, J. Biol. Chem., 1993, 268,
12843–12847.
This work was financially supported by the National Basic
Research Program of China (973 Program, no. 2011CB710800)
and National Science Foundation of China (no. 21317010 and
21025207).
27 A. M. Brozozowski, U. Derewenda, Z. S. Derewenda, G. G.
Dodson, D. W. Lawson, J. P. Turkenburg, F. Bjorking, B.
Hugejensen, S. A. Patkar and L. Thim, Nature, 1991, 351, 491.
28 M. G. Cacace, G. D. Prisco and R. Zito, FEBS Lett., 1976, 62,
338–441.
29 O. Barbosa, M. Ruiz, C. Ortiz, M. Fernández, R. Torres and
R. Fernandez-Lafuente, Process Biochem., 2012, 28, 473–479.
30 A. Behr, L. Johnen and B. Daniel, Green Chem., 2011, 13,
3168–3172.
31 C.-S. Chen, Y. Fujimoto, G. Girdaukas and C. J. Sih, J. Am.
Chem. Soc., 1982, 104, 7294–7299.
32 S. K. Das, M. M. R. Khan, A. K. Guha and N. Naskar, Green
Chem., 2013, 15, 2548–2557.
References
1 J. Mangas-Sánchez, E. Busto, V. Gotor-Fernández and V.
Gotor, Catal. Sci. Technol., 2012, 2, 1590–1595.
2 P. Gupta, N. Mahajan and S. C. Taneja, Catal. Sci. Technol.,
2013, 3, 2462–2480.
3 R. Kobayashia, N. Hiranoa, S. Kanayab, I. Saitoa and M.
Harukia, J. Mol. Catal. B: Enzym., 2010, 67, 155–161.
4 D. Guieysse, J. Cort, S. Puech-Guenot and S. Barbe,
ChemBioChem, 2008, 9, 1308–1317.
5 K. Engström, J. Nyhlén, A. G. Sandström and J.-E. Bäckvall,
J. Am. Chem. Soc., 2010, 132, 7038–7042.
6 K. Liebeton, A. Zonta, K. Schimossek, M. Nardini, D. Lang
and K. Jaeger, Chem. Biol., 2000, 7, 709–718.
33 M. Luic, Z. Stefanic, I. Ceilinger, M. Hodoscek, D. Janezic, T.
Lenac, I. L. Asler, D. Sepac and S. Tomic, J. Phys. Chem. B,
2008, 112, 4876–4883.
7 P. Vongvilai and O. Ramström, J. Am. Chem. Soc., 2009, 131,
14419–14425.
8 R. J. Kazlauskas, A. N. E. Weissfloch, A. T. Rappaport and
L. A. Cuccia, J. Org. Chem., 1991, 56, 2656–2665.
9 B. G. Davis, Curr. Opin. Biotechnol., 2003, 14, 379–386.
10 J. M. Chalker, G. J. L. Bernardes, Y. A. Lin and B. G. Davis,
Chem. – Asian J., 2009, 4, 630–640.
34 K. Ban, T. Ueki, Y. Tamada, T. Saito, S. Imabayashi and M.
Watanabe, Anal. Chem., 2003, 75, 910–917.
35 X. J. Ren, P. Jemth, P. G. Board, G. M. Luo, B. Mannervik,
J. Q. Liu, K. Zhang and J. C. Shen, Chem. Biol., 2002, 9,
789–794.
11 A. Cavarzan, J. N. H. Reek, F. Trentin, A. Scarso and G.
Strukul, Catal. Sci. Technol., 2013, 3, 2898–2901.
12 G. J. L. Bernardes, J. M. Chalker, J. C. Errey and B. G. Davis,
J. Am. Chem. Soc., 2008, 130, 5052–5053.
13 S. Al-Khattaf, C. D'Agostino, M. N. Akhtar, N. Al-Yassir, N. Y.
Tan and L. F. Gladden, Catal. Sci. Technol., 2014, 4,
1017–1027.
36 K. J. Wu and R. W. Odom, Anal. Chem., 1998, 70, 456A–461A.
37 C. Fenselau and P. A. Demirev, Mass Spectrom. Rev.,
2001, 20, 157–171.
38 J. O. Lay Jr, Mass Spectrom. Rev., 2001, 20, 172–194.
39 P. A. Demirev and C. Fenselau, J. Mass Spectrom., 2008, 43,
1441–1457.
40 Y. W. Lu, C. W. Chien, P. C. Lin, L. D. Huang, C. Y. Chen,
S. W. Wu, C. L. Han, K. H. Khoo, C. C. Lin and Y. J. Chen,
Anal. Chem., 2013, 85, 8268–8276.
14 M. Marciello, M. Filice and J. M. Palomo, Catal. Sci.
Technol., 2012, 2, 1531–1543.
15 J. Olano, J. Soler, F. Bustoand and D. De Arriaga, Eur. J.
Biochem., 1999, 261, 640–649.
16 P. Cuatrecasas, S. Fuchs and C. B. Anfinsen, J. Biol. Chem.,
1968, 234, 4787–4798.
17 Z. Shriver, Y. Hu, K. Pojasek and R. Sasisekharan, J. Biol.
Chem., 1998, 273, 22904–22912.
18 C. G. Acevedo-Rocha, M. G. Hoesl, S. Nehring, M. Royter, C.
Wolschner, B. Wiltschi, G. Antranikian and N. Budisa, Catal.
Sci. Technol., 2013, 3, 1198–1201.
41 T. Hayashi, Y. Sun, T. Tamura, K. Kuwata, Z. N. Song, Y.
Takaoka and I. Hamachi, J. Am. Chem. Soc., 2013, 135,
12252–12258.
42 P. D. Pelton and A. J. Ganzhorn, J. Biol. Chem., 1992, 267,
5916–5920.
43 R. M. Lau, M. J. Sorgedrager, G. Carrea, F. van Rantwijk, F.
Secundo and R. A. Sheldon, Green Chem., 2004, 6, 483–486.
44 B. C. Koops, H. M. Verheij, A. J. Slotboom and M. R.
Egmond, Enzyme Microb. Technol., 1999, 25, 622–631.
This journal is © The Royal Society of Chemistry 2015
Catal. Sci. Technol., 2015, 5, 2681–2687 | 2687