Beilstein J. Org. Chem. 2016, 12, 1185–1195.
References
cyclohex-2-en-1-yl benzoate a notable enantiomeric excess of
70% was achieved using ligand 14-TES, in striking contrast to
the extremely low enantioselectivities reported for analogous
PHOX ligands [4]. Using ligand 14 with a free hydroxy group
the result was less satisfying. Not only the yield dropped to 53%
but also the ee was substantially lower than with the triethylsilyl
analog 14-TES. For NeoPHOX ligand 1b the enantiomeric
excess was even lower (5%). These results demonstrate that the
2nd generation NeoPHOX ligands possess potential for palla-
dium-catalyzed allylic substitutions.
1. von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32,
2. Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769–1772.
3. Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J.
Tetrahedron Lett. 1993, 34, 3149–3150.
4. Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336–345.
5. Linton, E. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130,
6. Wang, Y.; Liu, D.; Meng, Q.; Zhang, W. Tetrahedron: Asymmetry 2009,
7. Petersen, K. S.; Stoltz, B. M. Tetrahedron 2011, 67, 4352–4357.
Conclusion
The most successful, most widely applied oxazoline-based N,P
ligands are derived from the unnatural amino acid tert-leucine.
The high price of this starting material is an impeding factor for
large-scale applications. The NeoPHOX ligands derived from
threonine provide an attractive alternative in this respect. Threo-
nine as a chiral building block is available in both enantiomeric
forms at a moderate price. The most effective ligand in this
series, bearing a bulky CMe2OSiMe2t-Bu group at the stereo-
genic center, induced excellent enantioselectivities in the Ir-cat-
alyzed asymmetric hydrogenation of olefins, with ee values in
the same range as those reported for the best N,P ligands includ-
ing the tert-leucine-derived NeoPHOX analog. In the asym-
metric Pd-catalyzed allylic substitution as well, promising enan-
tioselectivities were obtained, indicating a considerable poten-
tial for this ligand class in asymmetric catalysis.
8. Seto, M.; Roisen, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed. 2008, 47,
9. Marinescu, S. C.; Nishimata, T.; Mohr, J. T.; Stoltz, B. M. Org. Lett.
10.Carroll, M. P.; Guiry, P. J. Chem. Soc. Rev. 2014, 43, 819–833.
11.Marziale, A. N.; Duquette, D. C.; Craig, R. A., II; Kim, K. E.; Liniger, M.;
Numajiri, Y.; Stoltz, B. M. Adv. Synth. Catal. 2015, 357, 2238–2245.
12.Zirimwabagabo, J.-O.; Harrity, J. P. A. Chem. Commun. 2014, 50,
13.Verendel, J. J.; Pàmies, O.; Diéguez, M.; Andersson, P. G. Chem. Rev.
14.Woodmansee, D. H.; Pfaltz, A. Top. Organomet. Chem. 2011, 34,
15.Roseblade, S. J.; Pfaltz, A. Acc. Chem. Res. 2007, 40, 1402–1411.
A further notable feature of these ligands is their flexible syn-
thesis, which allows easy variation of the substituent at the
stereogenic center. Using different Grignard reagents in the ad-
dition to the ester group of a late stage intermediate, an array of
tertiary alcohol derivatives is available. The subsequent silyla-
tion or acylation of the hydroxy group gives access to a library
of diverse NeoPHOX ligands. In this way the steric size and the
coordination ability of the substituent at the stereogenic center
can be tuned for a specific application.
16.Cui, X.; Burgess, K. Chem. Rev. 2005, 105, 3272–3296.
17.Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 2023–2026.
18.Menges, F.; Pfaltz, A. Adv. Synth. Catal. 2002, 344, 40–44.
19.Schrems, M. G.; Pfaltz, A. Chem. Commun. 2009, 6210–6212.
20.Ashby, E. C.; Gurumurthy, R.; Ridlehuber, R. W. J. Org. Chem. 1993,
21.Duca, J. S., Jr.; Gallego, M. H.; Pierini, A. B.; Rossi, R. A.
22.Muth, A.; Walter, O.; Huttner, G.; Asam, A.; Zsolnai, L.; Emmerich, C.
J. Organomet. Chem. 1994, 468, 149–163.
Supporting Information
Supporting Information File 1
23.Stohler, R.; Wahl, F.; Pfaltz, A. Synthesis 2005, 1431–1436.
Experimental procedures and characterization data of all
compounds and copies of 1H and 13C NMR spectra of
selected molecules.
24.Stohler, R. Asymmetric Metal-Catalyzed [3 + 2] Cycloadditions of
Azomethine Ylides. Ph.D. Thesis, University of Basel, Switzerland,
2006.
25.Bélanger, E.; Pouliot, M.-F.; Paquin, J.-F. Org. Lett. 2009, 11,
26.Bélanger, E.; Pouliot, M.-F.; Courtemanche, M.-A.; Paquin, J.-F.
27.Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc.
Acknowledgements
Financial support by the Swiss National Science Foundation is
gratefully acknowledged.
1194