SYNTHESIS OF SYMMETRICAL DISULFIDES
519
o
2
1
(
49.7, 35.1 Hz), 112.91 and 112.94 (C ), 114.81 t.t and
10. Naud, C., Calas, P., Blancou, H., and Commeyras, A.,
2′
J. Fluorine Chem., 2000, vol. 104, p. 173.
11. Mureau, N., Guittard, F., and Géribaldi, S., Tetrahedron
Lett., 2000, vol. 41, p. 2885.
14.82 t.t (C , J = 250.0, 26.7 Hz), 118.04 and 118.06
C ), 129.41 (C ), 147.12 and 147.13 (C ). F NMR
spectrum (470 MHz, CDCl ), δ , ppm: 22.81 d.m and
2.86 d.m (2F, 3′-F, J = 53.0 Hz), 37.17 m (2F, 2′-F).
Found, %: C 47.46; H 4.82; F 25.60; N 4.41; S 10.77.
C H F N O S . Calculated, %: C 48.64; H 4.76;
p
m
i
19
3
F
1
2. Thebault, P., Taffin de Givenchy, E., Guittard, F.,
Guimon, C., and Géribaldi, S., Thin Solid Films, 2008,
vol. 516, p. 1765.
2
2
4
28
8
2
2 2
1
3. Thebault, P., Taffin de Givenchy, E., Géribaldi, S.,
Levy, R., Vandenberghe, Y., and Guittard, F., J. Fluorine
Chem., 2010, vol. 131, p. 592.
F 25.65; N 4.73; S 10.82.
Bis(1-anilino-6,6,7,7,8,8,9,9-octafluoro-4-oxa-
nonan-2-yl) disulfide (7b, erythro–threo ~1:1). Yield
0%, dark yellow viscous oil. IR spectrum, ν, cm :
410 (N–H), 2917 (C–H), 1602, 1506 (C–N), 1167
C–F), 1120 (C–O–C). H NMR spectrum (500 MHz,
CDCl ), δ, ppm: 3.14 m (1H, 2-H), 3.29 m (1H, 1-H),
.54 m (1H, 1-H), 3.70 m (1H, 3-H), 3.75–3.91 m (3H,
-H, 1′-H), 3.97 br.s (1H, NH), 6.03 t.t (1H, 5′-H, J =
2.0, 5.3 Hz), 6.61 d (2H, m-H, J = 7.1 Hz), 6.73 m
1H, p-H), 7.17 m (2H, o-H). C NMR spectrum
126 MHz, CDCl ), δ , ppm: 44.27 and 44.39 (C ),
1.16 and 51.63 (C ), 67.89 t (C , J = 25.6 Hz), 73.11
and 73.13 (C ), 107.62 t.t (C , J = 254.3, 30.9 Hz),
10.11 t.t.t (C or C , J = 263.8, 30.1, 27.1 Hz), 110.90
t.t.t (C or C , J = 265.4, 33.2, 31.9 Hz), 113.01 and
13.03 (C ), 115.32 t.t (C , J = 257.5, 30.6 Hz), 118.07
and 118.09 (C ), 129.42 (C ), 147.19 (C ). F NMR
14. Birk, C. and Voss, J., Tetrahedron, 1996, vol. 52,
–
1
8
3
(
p. 12745.
1
5. Dwivedi, A.K., Sharma, V.L., Kumaria, N.,
Kumar, S.T.V.S.K., Srivastava, P.K., Ansari, A.H.,
Maikhuri, J.P., Gupta, G., Dhar, J.D., Roy, R.,
Joshi, B.S., Shukla, P.K., Kumar, M., and Singh, S.,
Bioorg. Med. Chem., 2007, vol. 15, p. 6642.
1
3
3
3
5
(
(
1
6. Fokin, A.V., Allakhverdiev, M.A., and Kolomiets, A.F.,
1
3
Russ. Chem. Rev., 1990, vol. 59, p. 405.
17. Fokin, A.V. and Kolomiets, A.F., Khimiya tiiranov
1
3 C
2
1′
5
(Chemistry of Thiiranes), Moscow: Nauka, 1978.
3
5′
1
8. Nalet’ko, S.A., Pervova, M.G., Gorbunova, T.I., Zape-
valov, A.Ya., Toporova, M.S., and Saloutin, V.I., Russ. J.
Gen. Chem., 2014, vol. 84, p. 2120.
3
′
4′
1
4
′
3′
o
2′
1
19. Fokin, A.V., Kolomiets, A.F., and Rudnitskaya, L.S.,
Bull. Acad. Sci. USSR, Div. Chem. Sci., 1974, vol. 23,
p. 2744.
p
m
i
19
spectrum (470 MHz, CDCl ), δ , ppm: 24.51 d.m (2F,
3
F
5
3
′-F, J = 52.0 Hz), 31.54 m (2F, 4′-F), 36.37 m (2F,
′-F), 42.06 m (2F, 2′-F). Found, %: C 42.39; H 3.51;
20. Christoforou, A., Nicolaou, G., and Elemes, Y.,
Tetrahedron Lett., 2006, vol. 47, p. 9211.
F 37.97; N 3.56; S 8.13. C H F N O S . Calculated,
21. Ruano, J.L.G., Parra, A., and Alemán, J., Green Chem.,
2
8
28 16
2
2 2
2
008, vol. 10, p. 706.
%: C 42.43; H 3.56; F 38.35; N 3.53; S 8.09.
2
2
2
2. Malinovskii, M.S., Okisi olefinov i ikh proizvodnye
(Olefin Oxides and Their Derivatives), Moscow:
Goskhimizdat, 1961.
3. Solov’ev, D.V., Kolomenskaya, L.V., Rodin, A.A.,
Zenkevich, I.G., and Lavrent’ev, A.N., Zh. Obshch.
Khim., 1991, vol. 61, p. 673.
4. Bazhin, D.N., Gorbunova, T.I., Zapevalov, A.Ya.,
Kirichenko, V.E., and Saloutin, V.I., Russ. J. Org.
Chem., 2007, vol. 43, p. 656.
REFERENCES
1
2
. Saito, G., Swanson, J.A., and Lee, K.-D., Adv. Drug
Delivery Rev., 2003, vol. 55, p. 199.
. Alves, L.C., Rubinger, M.M.M., Tavares, E.C.,
Janczak, J., Pacheco, E.B.A.V., Visconte, L.L.Y., and
Oliveira, M.R.L., J. Mol. Struct., 2013, vol. 1048, p. 244.
. Leitô, A., Costa, C., and Rodrigues, A., Chem. Eng. Sci.,
987, vol. 42, p. 2291.
. Yi, S.-L., Li, M.-C., Hu, X.-Q., Mo, W.-M., and
Shen, Z.-L., Chin. Chem. Lett., 2016, vol. 27, p. 1505.
. Liang, G.G., Liu, M.C., Chen, J.X., Ding, J., Gao, W.,
and Wu, H., Chin. J. Chem., 2012, vol. 30, p. 1611.
. Huang, D., Chen, J., Dan, W., Ding, J., Liu, M., and
3
4
5
6
1
2
2
5. Gorbunova, T.I., Zapevalov, A.Ya., and Saloutin, V.I.,
Russ. J. Org. Chem., 1998, vol. 34, p. 360.
6. Albert, A. and Serjeant, E., Ionization Constants of
Acids and Bases, London: Methuen, 1962. Translated
under the title Konstanty ionizatsii kislot i osnovanii,
Moscow: Khimiya, 1964, p. 133.
Wu, H., Adv. Synth. Catal., 2012, vol. 354, p. 2123.
27. Guseinova, A.T., Magerramov, A.M., and Allakhver-
7
8
. Ge, W. and Wei, Y., Green Chem., 2012, vol. 14, p. 2066.
. Srogl, J., Hyvl, J., Revesz, A., and Schröder, D., Chem.
Commun., 2009, p. 3463.
diev, M.A., Russ. J. Org. Chem., 2008, vol. 44, p. 946.
28. Verzhichinskaya, S.V., Cand. Sci. (Chem.) Dissertation,
Moscow, 2005.
9
. Bierla, A., Fromentin, G., Minfray, C., Martin, J.-M.,
Le Mogne, T., and Genet, N., Wear, 2012, vols. 286–287,
p. 116.
29. Bekker, R.A., Popkova, V.Ya., Rozova, L.A., and
Knunyants, I.L., Bull. Acad. Sci. USSR, Div. Chem. Sci.,
1984, vol. 33, p. 2342.
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 53 No. 4 2017