SCHEME 1. Rh od iu m -Ca ta lyzed Con ju ga te
Ad d ition of P h en ylbor on ic Acid to Cycloh exen on e
High Efficien cy a n d En a n tioselectivity in
th e Rh -Ca ta lyzed Con ju ga te Ad d ition of
Ar ylbor on ic Acid s Usin g Mon od en ta te
P h osp h or a m id ites
J ean-Guy Boiteau, Adriaan J . Minnaard,* and
Ben L. Feringa*
Department of Organic and Molecular Inorganic Chemistry,
Stratingh Institute, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands
of substrates have been obtained. The chiral ligands em-
ployed in this reaction are bidentate in nature; most fre-
quently, BINAP is used although binol-based diphospho-
nites,7 and amidomonophosphines,8 are also successful.9
feringa@chem.rug.nl
Received August 6, 2003
Recently, we showed that simple monodentate phos-
phoramidites can be used as ligands in the rhodium-
catalyzed asymmetric conjugate addition of boronic ac-
ids.10 This was confirmed in a communication by Miyaura
and co-workers.11 Compared to bis-phosphines, phos-
phoramidites are simple, readily accessible, and easily
tunable ligands. The amine part as well as the diol part
can be extensively modified due to the molecular struc-
ture of these ligands. Despite the rather drastic condi-
tions (dioxane, water, 100 °C for 5 h), the rhodium-bound
phosphoramidite is remarkably stable.10 In an attempt
to improve the observed enantioselectivity, we examined
phosphoramidites L1-L4 in the rhodium-catalyzed con-
jugate addition of phenylboronic acid 1a to cyclohexenone
2 (Scheme 1 and Table 1, entries 1-4).
We were pleased to find that ligand L4 showed very
high enantioselectivity, and (S)-3-phenylcyclohexanone
(S)-2a was obtained quantitatively with an ee > 98%!
To extend the scope of this reaction, we tested phos-
phoramidite L4 using several substrates and arylboronic
acids (Table 1, Scheme 2, entries 5-11). In most cases,
full conversion was achieved within 5 h at 100 °C, and
high levels of enantioselectivity (85 to >98% ee) were
reached.12 These results clearly show that the catalyst
based on phosphoramidite L4 is more enantioselective
than the catalysts based on phosphoramidites L1-L3
used in the screening.13
Abstr a ct: A very fast reaction and enantioselectivities
>98% have been reached in the rhodium-catalyzed arylbor-
onic acid addition to enones using a monodentate phos-
phoramidite ligand. Temperature-dependent studies show
that monodentate phosphoramidites form stable complexes
with metals and can induce high enantioselectivities even
at high temperatures in polar solvents.
Enantioselective 1,4-additions of organometallic re-
agents to enones hold a prominent position in our reper-
toire to assemble carbon-carbon bonds in organic chem-
istry.1 Following the introduction of chiral phosphora-
midite ligands for the copper-catalyzed conjugate addition
of dialkylzinc reagents,2 which showed excellent enan-
tioselectivities, numerous chiral catalysts have been
introduced in recent years for this asymmetric reaction.3
These methods are, however, limited to aliphatic dial-
kylzinc reagents although a variety of functional groups
are tolerated. A prominent example is the copper-catal-
yzed conjugate addition of an ester-functionalized organ-
ozinc reagent to a cyclopentenone as applied in the short
asymmetric synthesis of prostaglandin PGE1.4 So far, the
use of aryl- or alkenylzinc reagents in the copper-cata-
lyzed conjugate addition has met with limited success.5
Hayashi and Miyaura have reported the rhodium-
catalyzed conjugate addition of boronic acids as the me-
thod of choice to introduce aryl or alkenyl moieties to
enones,6 and high enantioselectivities with a broad scope
(6) (a) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997,
16, 4229. (b) Hayashi, T. Synlett 2001, 879. (c) Takaya, Y.; Ogasawara,
M.; Hayashi, T.; Sakai, M.; Miyaura, M. J . Am. Chem. Soc. 1998, 120,
5579. (d) Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J . Am.
Chem. Soc. 1999, 121, 11591. (e) Takaya, Y.; Senda, T.; Kurushima,
H.; Ogasawara, M.; Hayashi, T. Tetrahedron: Asymmetry 1999, 10,
4047. (f) Sakuma, S.; Sakai, M.; Itooka, R.; Hayashi, T. J . Org. Chem.
2000, 65, 5951. (g) Senda, T.; Ogasawara, M.; Hayashi, T. J . Org.
Chem. 2001, 66, 6852. (h) Hayashi, T.; Senda, T.; Ogasawara, M. J .
Am. Chem. Soc. 2000, 122, 10716. (i) Hayashi, T.; Takahashi, M.;
Takaya, Y.; Ogasawara, M. J . Am. Chem. Soc. 2002, 124, 5052. (J )
Sakuma, S.; Miyaura, N. J . Org. Chem. 2001, 66, 8944-8946.
(7) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083.
(8) (a) Kuriyama, M.; Tomioka, K. Tetrahedron Lett. 2001, 42, 921.
(b) Kuriyama, M.; Nagai, K.; Yamada, K.-I.; Miwa, Y.; Taga, T.;
Tomioka, K. J . Am. Chem. Soc. 2002, 124, 8932.
* Corresponding author.
(1) Tomioka, K. Nagaoka, Y. In Comprehensive Asymmetric Cataly-
sis; J acobsen, E. N., Pfalz, A., Yamamoto, H., Eds.; Springer-Verlag:
Berlin, Heidelberg, 1999; Vol. 3; Chapter 31.1.
(2) (a) de Vries, A. H. M.; Meetsma, A.; Feringa, B. L. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 2374. (b) Naasz, R.; Arnold, L. A.; Minnaard,
A. J .; Feringa B. L. Angew. Chem., Int. Ed. 2001, 40, 927. (c) Naasz,
R.; Arnold, L. A.; Pineschi, M.; Keller, E.; Feringa, B. L. J . Am. Chem.
Soc. 1999, 121, 1104. (d) Naasz, R.; Arnold, L. A.; Minnaard, A. J .;
Feringa, B. L. Chem. Commun. 2001, 735. (e) Bertozzi, F.; Crotti, P.;
Macchia, F.; Pineschi, M.; Feringa, B. L. Angew. Chem., Int. Ed. 2001,
40, 930.
(3) For reviews, see: (a) Krause N.; Gerold, A. Angew. Chem., Int.
Ed. Engl. 1997, 36, 186. (b) Krause N. Angew. Chem., Int. Ed. 1998,
37, 283. (c) Feringa, B. L.; Naasz, R.; Imbos, R.; Leggy, A. L. In Modern
Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim,
2002; Chapter 7, p 224. (d) Alexakis, A.; Benhaim, C. Eur. J . Org.
Chem. 2002, 3221.
(9) For a review on rhodium-catalyzed carbon-carbon bond-forming
reactions of organometallic compounds, see: Fagnou, K.; Lautens, M.
Chem. Rev. 2003, 103, 169.
(4) (a) Arnold, L. A.; Naasz, R.; Minnaard, A. J .; Feringa, B. L. J .
Am. Chem. Soc. 2001, 123, 5841. (b) Arnold, L. A.; Naasz, R.; Minnaard,
A. J .; Feringa, B. L. J . Org. Chem. 2002, 67, 7244.
(5) Schinnerl, M.; Seitz, M.; Kaiser, A.; Reiser, O. Org. Lett. 2001,
3, 4259.
(10) Boiteau, J . G.; Imbos, R.; Minnaard, A. J .; Feringa, B. L. Org.
Lett. 2003, 5, 681 and 1385.
(11) Iguchi, Y.; Itooka, R.; Miyaura N. Synlett 2003, 7, 1040.
(12) The reaction time of 5 h as well as the use of 3 equiv of boronic
acid was chosen as a standard protocol.
10.1021/jo035155e CCC: $25.00 © 2003 American Chemical Society
Published on Web 11/05/2003
J . Org. Chem. 2003, 68, 9481-9484
9481