A New Pathway to 2-Arylbenzoxazoles and 2-Arylbenzothiazoles Via One-Pot Oxidative Cyclization…
solvent for this synthetic protocol. The transformation
required the presence of an oxidant, and the system of di-
tert-butylperoxide with xylene led to best yield of major
products. The MOF-235 catalyst presented higher catalytic
eꢁectiveness for the synthesis of 2-arylbenzoxazoles and
20. Song B-Q, Chen D-Q, Ji Z, Tang J, Wang X-L, Zang H-Y et al
(
2017) Chem Commun 53:1892–1895
2
1. Rogge SMJ, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI,
Sepúlveda-Escribano A et al (2017) Chem Soc Rev 46:3134–3184
22. Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Par-
vulescu VI, Sels BF (2018) Chem Soc Rev 47:8349–8402
2
3. Dhakshinamoorthy A, Li Z, Garcia H (2018) Chem Soc Rev
2-arylbenzothiazoles than a number of MOF-based catalysts
4
7:8134–8172
and established homogeneous catalysts. The cyclization
reaction was able to progress only with the solid iron-based
framework, and the contribution of homogeneous catalysis
to the production of major products was inconsequential. It
was feasible to recover and reutilize the framework catalyst
for the cyclization transformation various times while its
catalytic eꢀciency was retained. The beneꢂts that 2-arylb-
enzoxazoles and 2-arylbenzothiazoles could be synthesized
through one-pot oxidative cyclization reactions between
2
4. Zhu L, Liu X-Q, Jiang H-L, Sun L-B (2017) Chem Rev
117:8129–8176
25. Xiong G, Yu B, Dong J, Shi Y, Zhao B, He L-N (2017) Chem
Commun 53:6013–6016
2
6. Cirujano FG, López-Maya E, Rodríguez-Albelo M, Barea E, Nav-
arro JAR, Vos DED (2017) ChemCatChem 9:4019–4023
27. Shao Z, Mengjia Liu JD, Huang C, Xu W, Jie Wu, and Hongwei
Hou. Inorg Chem.57:10224–10231
2
8. Xu Z, Meng W, Li H, Hou H, Fan Y (2014) Inorg Chem
5
3:3260–3262
2
9. Wu Q, Han Y, Shao Z, Li J, Hou H (2018) Dalton Trans
47:8063–8069
2
-aminophenols or 2-aminothiophenols and alcohols uti-
lizing a recyclable catalyst would provide advantages over
classical homogeneous approaches, and therefore would be
engaging to the chemical industry.
30. Huang Y-B, Liang J, Wang X-S, Cao R (2017) Chem Soc Rev
4
6:126–157
1. Chughtai HA, Ahmad N, Younus HA, Laypkov A, Verpoort F
2015) Chem Soc Rev 44:6804–6849
3
(
3
2. Drake T, Ji P, Lin W (2018) Acc Chem Res 51:2129–2138
Acknowledgements The Viet Nam National University—Ho Chi Minh
City (VNU-HCM) is acknowledged for ꢂnancial support via project
No. NV2019-20-02.
33. Oar-Arteta L, Wezendonk T, Sun X, Kapteijn F, Gascon J (2017)
Mater Chem Front 1:1709–1745
34. Chen Y-Z, Zhang R, Jiao L, Jiang H-L (2018) Coord Chem Rev
3
62:1–23
3
5. Wen Y, Zhang J, Xu Q, Wu X-T, Zhu Q-L (2018) Coord Chem
Rev 376:248–276
References
3
3
6. Liang J, Huang Y-B, Cao R (2019) Coord Chem Rev 378:32–65
7. Dhakshinamoorthy A, Garcia H (2014) Chem Soc Rev
43:5750–5765
1
2
3
4
5
.
.
.
.
.
Gong J, Huang L, Deng Q, Jie K, Wang Y, Guo S et al (2017) Org
Chem Front 4:1781–1784
38. Dhakshinamoorthy A, Asiri AM, Garcia H (2019) ACS Catal
9:1081–1102
Prajapati NP, Vekariya RH, Borad MA, Patel HD (2014) RSC Adv
4
:60176–60208
39. Dhakshinamoorthy A, Asiri AM, Garcia H (2015) Chem Soc Rev
44:1922–1947
Bougrin K, Loupy A, Soufiaoui M (1998) Tetrahedron
5
4:8055–8064
40. Haque E, Jun JW, Jhung SH (2011) J Hazard Mater 185:507–511
41. Anbia M, Hoseini V, Sheykhi S (2012) J Ind Eng Chem
18:1149–1152
Wu F, Zhang J, Wei Q, Liu P, Xie J, Jiang H et al (2014) Org
Biomol Chem 12:9696–9701
Aksenov NA, Aksenov AV, Nadein ON, Aksenov DA, Smirnov
AN, Rubin M (2015) RSC Adv 5:71620–71626
42. Sudik AC, Côté AP, Yaghi OM (2005) Inorg Chem 44:2998–3000
43. Le TD, Nguyen KD, Nguyen VT, Truong T, Phan NTS (2016) J
Catal 333:94–101
6
7
.
.
Tiwari AR, Bhanage BM (2016) Org Biomol Chem 14:7920–7926
Lin W-H, Wu W-C, Selvaraju M, Sun C-M (2017) Org Chem
Front 4:392–397
44. Ha PTM, Le TD, Doan SH, Nguyen TT, Le NTH, Phan NTS
(2017) Tetrahedron 73:5883–5891
8
9
.
.
Naresh G, Kant R, Narender T (2014) J Org Chem 79:3821–3829
Toni Hille T, Irrgang KR, (2014) Chem Eur J 20:5569–5572
45. Doan SH, Nguyen KD, Huynh PT, Nguyen TT, Phan NTS (2016)
J Mol Catal A 423:433–440
1
1
1
0. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK
46. Li Z, Fan F, Yang J, Liu Z-Q (2014) Org Lett 16:3396–3399
47. Liu Q, Jackstell R, Beller M (2013) Angew Chem Int Ed
52:13871–13873
(
2017) Chem Soc Rev 46:3242–3285
1. Bao Z, Chang G, Xing H, Krishna R, Ren Q, Chen B (2016)
Energy Environ Sci 9:3612–3641
48. Liu C, Liu D, Lei A (2014) Acc Chem Res 47:3459–3470
49. Teng F, Sun S, Jiang Y, Yu J-T, Cheng J (2015) Chem Commun
51:5902–5905
2. Zou F, Chao SL, Wang YX, Wang YL, Guan QX, Li W (2017)
Environ Sci 4:46–51
1
1
3. Qin L, Zheng H-G (2017) CrystEngComm 19:745–757
4. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R
51. Dan-Hardi M, Chevreau H, Devic T, Horcajada P, Maurin G,
Férey G et al (2012) Chem Mater 24:2486–2492
52. Baburin IA, Blatov VA, Carlucci L, Ciani G, Proserpio DM (2005)
J Solid State Chem 178:2452–2474
(
2017) Chem Soc Rev 46:3185–3241
1
1
5. Julien PA, Mottillo C, Friščić T (2017) Green Chem 19:2729–2747
6. Li P, Cheng F-F, Xiong W-W, Zhang Q (2018) Inorg Chem Front
5
:2693–2708
1
1
1
7. Lv X-X, Shi L-L, Li K, Li B-L, Li H-Y (2017) Chem Commun
3:1860–1863
8. Al-Ghoul M, Issa R, Hmadeh M (2017) CrystEngComm
5
Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional aꢀliations.
1
9:608–612
9. Qin J-S, Yuan S, Wang Q, Alsalme A, Zhou H-C (2017) J Mater
Chem A 5:4280–4291
1
3