Paper
PCCP
isomerization processes of AB. By utilizing THz-TDS, we demon- 13 M. Quick, A. L. Dobryakov, M. Gerecke, C. Richter, F. Berndt,
strate that the rate of thermal cis-to-trans isomerization of AB in
I. N. Ioffe, A. A. Granovsky, R. Mahrwald, N. P. Ernsting and
non-polar solvent is faster than that in polar solvent; and Au NPs
S. A. Kovalenko, J. Phys. Chem. B, 2014, 118, 8756–8771.
as a catalyst can effectively promote the thermal cis-to-trans 14 C. M. Stuart, R. R. Frontiera and R. A. Mathies, J. Phys.
isomerization of AB; we also provide evidence that the solvent
Chem. A, 2007, 111, 12072–12080.
polarity, temperature and Au NPs as a catalyst don’t affect the 15 R. D. Curtis, J. W. Hilborn, G. Wu, M. D. Lumsden,
photo-isomerization of AB obviously. THz-TDS enables quantita-
tive distinguishing of the conversion state from one isomer to the
R. E. Wasylishen and J. A. Pincock, J. Phys. Chem., 1993,
97, 1856–1861.
other that occurs in response to light or heat and thus offer new 16 V. Jelic, K. Iwaszczuk, P. H. Nguyen, C. Rathje, G. J. Hornig,
insights into the isomerization processes. Given the extraordinary
sensitivity of this technology, we believe the decisive and non-
H. M. Sharum, J. R. Hoffman, M. R. Freeman and F. A.
Hegmann, Nat. Phys., 2017, 13, 591–598.
destructive THz-TDS provides exciting possibilities for investiga- 17 S. P. Delaney and T. M. Korter, J. Phys. Chem. A, 2015, 119,
tions and better understanding of the conformational dynamics of
molecules.
3269–3276.
18 N. Goubet, A. Jagtap, C. Livache, B. Martinez, H. Portales,
X. Z. Xu, R. Lobo, B. Dubertret and E. Lhuillier, J. Am. Chem.
Soc., 2018, 140, 5033–5036.
1
9 P. H. Siegel, IEEE Trans. Microwave Theory Tech., 2004, 52,
438–2447.
20 M. Naftaly and R. E. Miles, Proc. IEEE, 2007, 95, 1658–1665.
Conflicts of interest
2
There are no conflicts of interest to declare.
2
1 B. Fischer, M. Hoffmann, H. Helm, G. Modjesch and
P. U. Jepsen, Semicond. Sci. Technol., 2005, 20, S246.
2 J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday
Soc., 1951, 11, 55–75.
2
Acknowledgements
This work was supported by the National Key Research and 23 C. J. Brown, Acta Crystallogr., 1966, 21, 146–152.
Development Program of China (No. 2017YFA0701004), and the 24 G. C. Hampson and J. M. Robertson, J. Chem. Soc., 1941,
National Natural Science Foundation of China (Grant No.
1875150, 61735012, 61420106006, 61427814 and 61605143).
409–413, DOI: 10.1039/JR9410000409.
25 D. Grischkowsky, S. Keiding, M. van Exter and C. Fattinger,
J. Opt. Soc. Am. B, 1990, 7, 2006–2015.
6
26 J. Han, Z. Zhu, S. Ray, A. K. Azad, W. Zhang, M. He, S. Li and
Y. Zhao, Appl. Phys. Lett., 2006, 89, 031107.
Notes and references
27 T. Beyer and S. L. Price, CrystEngComm, 2000, 2, 183–190.
1
H. M. D. Bandara and S. C. Burdette, Chem. Soc. Rev., 2012, 28 Y. C. Shen, P. C. Upadhya, E. H. Linfield and A. G. Davies,
1, 1809–1825.
Appl. Phys. Lett., 2003, 82, 2350–2352.
C. J. Saint-Louis, Control of molecular geometries using new 29 M. Takahashi, N. Okamura, X. Fan, H. Shirakawa and
4
2
photo-electro-switchable azobenzenes, The University of Alabama,
015.
G. S. Hartley, Nature, 1937, 140, 281.
H. Minamide, J. Phys. Chem. A, 2017, 121, 2558–2564.
30 T. Pan, S. Li, T. Zou, Z. Yu, B. Zhang, C. Wang, J. Zhang, M. He
and H. Zhao, Spectrochim. Acta, Part A, 2017, 178, 19–23.
2
3
4
M. A. Kienzler, A. Reiner, E. Trautman, S. Yoo, D. Trauner 31 S. Zong, G. Ren, S. Li, B. Zhang, J. Zhang, W. Qi, J. Han and
and E. Y. Isacoff, J. Am. Chem. Soc., 2013, 135, 17683–17686.
H. Zhao, J. Mol. Struct., 2018, 1157, 486–491.
M. Dong, A. Babalhavaeji, C. V. Collins, K. Jarrah, O. Sadovski, 32 M. Walther, B. M. Fischer and P. Uhd Jepsen, Chem. Phys.,
5
Q. Dai and G. A. Woolley, J. Am. Chem. Soc., 2017, 139,
3483–13486.
K. G. Yager and C. J. Barrett, J. Photochem. Photobiol., A,
006, 182, 250–261.
Z. F. Liu, K. Hashimoto and A. Fujishima, Nature, 1990,
47, 658.
Z. Li, M. Wang, H. Li, J. He, N. Li, Q. Xu and J. Lu, J. Mater.
Chem. C, 2017, 5, 8593–8598.
Y. Norikane and N. Tamaoki, Org. Lett., 2004, 6, 2595–2598.
2003, 288, 261–268.
1
33 N. Norio, S. Toshinobu, Y. Hideyuki, I. Etsuko, Y. Shunzo
and H. Shigeo, Bull. Chem. Soc. Jpn., 1976, 49, 1381–1387.
34 F. Serra and E. M. Terentjev, Macromolecules, 2008, 41,
981–986.
35 G. Angelini, N. Canilho, M. Emo, M. Kingsley and C. Gasbarri,
J. Org. Chem., 2015, 80, 7430–7434.
6
7
8
9
2
3
36 P. De Maria, A. Fontana, C. Gasbarri, G. Siani and
P. Zanirato, ARKIVOC, 2009, 8, 16–29.
1
1
1
0 T. Muraoka, K. Kinbara and T. Aida, Nature, 2006, 440, 37 N. K. Joshi, M. Fuyuki and A. Wada, J. Phys. Chem. B, 2014,
12–515.
118, 1891–1899.
1 A. A. Beharry and G. A. Woolley, Chem. Soc. Rev., 2011, 40, 38 G. L. Hallett-Tapley, C. D’Alfonso, N. L. Pacioni, C. D.
5
4422–4437.
McTiernan, M. Gonzalez-Bejar, O. Lanzalunga, E. I. Alarcon
2 M. R. Molla, P. Rangadurai, L. Antony, S. Swaminathan,
and J. C. Scaiano, Chem. Commun., 2013, 49, 10073–10075.
J. J. de Pablo and S. Thayumanavan, Nat. Chem., 2018, 10, 39 S. Simoncelli and P. F. Aramend ´ı a, Catal. Sci. Technol., 2015,
59–666. 5, 2110–2116.
6
2
7212 | Phys. Chem. Chem. Phys., 2018, 20, 27205--27213
This journal is ©the Owner Societies 2018