Mendeleev Commun., 2019, 29, 80–82
10 L. Cao, S.-H. Luo, K. Jiang, Z.-F. Hao, B.-W. Wang, C.-M. Pang and
also be deprotonated with hydroxide anion formed on the cathode
to give thiolate anion C, which can react with sulfonyl iodide A
providing desired product 3. Thiolate anion C can be oxidized
with molecular iodine11(c) or hypoiodites, iodates, periodates,
providing sulfenyl iodide D.17 Its reaction with sulfonyl radical
B18 generated from unstable sulfonyl iodide A also results in
thiosulfonate 3.19 Side disulfide E can be produced as a result
of the reaction of thiol 220 or thiolate anion C with sulfenyl iodide
D,21 as well as oxidation of thiolate anion C with molecular iodine,
hypoiodites, iodates and periodates followed by recombination
of formed thiyl radicals.22 In addition, thiyl radical and thiolate
anion C can be generated through the reductive cleavage of S–S
bond in diorganyl disulfide E.
To summarize, we have demonstrated application of electric
current for the synthesis of unsymmetrical thiosulfonates from
arenesulfonohydrazides and thiols through oxidative S–S bond
formation. The process is conducted in an undivided electro-
chemical cell equipped with graphite anode and stainless steel
cathode. Ammonium iodide was applied both as a supporting
electrolyte and a redox catalyst. A wide scope of starting com-
pounds successfully enters into this reaction. A possible reaction
mechanism was proposed with the use of cyclic voltammetry.
Z.-Y. Wang, Org. Lett., 2018, 20, 4754.
11 (a) Y. Jiang, K. Xu and C. Zeng, Chem. Rev., 2018, 118, 4485;
(b) S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe and S. R.
Waldvogel, Angew. Chem. Int. Ed., 2018, 57, 6018; (c) K. Liu, C. Song
and A. Lei, Org. Biomol. Chem., 2018, 16, 2375; (d) D. Pletcher,
R. A. Green and R. C. D. Brown, Chem. Rev., 2018, 118, 4573;
(e) A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes and S. R.
Waldvogel, Angew. Chem. Int. Ed., 2018, 57, 5594; (f) D. S. P. Cardoso,
B. Šljukic´, D. M. F. Santos and C. A. C. Sequeira, Org. Process Res.
Dev., 2017, 21, 1213; (g) M. Yan, Y. Kawamata and P. S. Baran, Chem.
Rev., 2017, 117, 13230; (h) A. S. Mendkovich, M. A. Syroeshkin,
K. R. Mitina, M. N. Mikhailov, V. P. Gultyai and V. M. Pechennikov,
Mendeleev Commun., 2017, 27, 580; (i) Y. Yuan, Y. Cao, Y. Lin, Y. Li,
Z. Huang and A. Lei, ACS Catal., 2018, 8, 10871; (j) H.-B. Zhao,
P. Xu, J. Song and H. C. Xu, Angew. Chem. Int. Ed., 2018, 57, 15153;
(k) B. V. Lyalin, V. L. Sigacheva, L. L. Fershtat, N. N. Makhova and
V. A. Petrosyan, Mendeleev Commun., 2018, 28, 518; (l) L. Li, Q.Yang,
Z. Jia and S. Luo, Synthesis, 2018, 50, 2924; (m) A. O. Terent’ev,
O. M. Mulina, D. A. Pirgach, M. A. Syroeshkin, A. P. Glinushkin and
G. I. Nikishin, Mendeleev Commun., 2016, 26, 538; (n) A. O. Terent’ev,
O. M. Mulina, D. A. Pirgach, A. I. Ilovaisky, M. A. Syroeshkin, N. I.
Kapustina and G. I. Nikishin, Tetrahedron, 2017, 73, 6871.
12 O. M. Mulina and A. O. Terent’ev, in Proceedings of the International
Conference ‘Frontiers in Chemistry’, Armenia, 2018, p. PS 073.
13 (a) X.-J. Pan, J. Gao and G.-Q. Yuan, Tetrahedron, 2015, 71, 5525;
(b) H. Huang, G. Yuan, X. Li and H. Jiang, Tetrahedron Lett., 2013,
54, 7156; (c) X. Gao, G. Yuan, H. Chen, H. Jiang, Y. Li and C. Qi,
Electrochem. Commun., 2013, 34, 242; (d) G. Yuan, Z. Zhu, X. Gao
and H. Jiang, RSC Adv., 2014, 4, 24300; (e) Q. Qu, X. Gao, J. Gao and
G. Yuan, Sci. China: Chem., 2015, 58, 747; (f) S. Liang, C.-C. Zeng,
X.-G. Luo, F.-Z. Ren, H.-Y. Tian, B.-G. Sun and R. D. Little, Green
Chem., 2016, 18, 2222.
This work was supported by the Russian Foundation for Basic
Research (grant no. 18-33-00693).
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2019.01.027.
14 Y.-C. Luo, X.-J. Pan and G.-Q. Yuan, Tetrahedron, 2015, 71, 2119.
15 (a) L. Emmanuvel, R. K. Shukla, A. Sudalai, S. Gurunath and S. Sivaram,
Tetrahedron Lett., 2006, 47, 4793; (b) W.-C. Li, C.-C. Zeng, L.-M. Hu,
H.-Y. Tian and R. D. Little, Adv. Synth. Catal., 2013, 355, 2884.
16 (a) C. L. Mehltretter, US Patent 2770589A, 1956; (b) C. L. Mehltretter,
US Patent 2830941A, 1958; (c)Y. Aiya, S. Fujii, K. Sugino and K. Shirai,
J. Electrochem. Soc., 1962, 109, 419; (d) S. Yamada, D. Morizono and
K. Yamamoto, Tetrahedron Lett., 1992, 33, 4329.
References
1 (a) J.-P. Mahieu, M. Gosselet, B. Sebille and Y. Beuzard, Synth. Commun.,
1986, 16, 1709; (b) H. T. Pham, N.-L. T. Nguyen, F. Duus and T. X. T. Luu,
Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 1934.
2 (a) A. Lei, W. Shi, C. Liu, W. Liu, H. Zhang and C. He, Oxidative Cross-
Coupling Reactions, 1st edn., Wiley-VCH, Weinheim, 2016; (b) T. Zhang,
N.-X. Wang andY. Xing, J. Org. Chem., 2018, 83, 7559; (c) Y. Liu, H. Yi
and A. Lei, Chin. J. Chem., 2018, 36, 692; (d) S. Murarka and A. P.
Antonchick, Synthesis, 2018, 50, 2150; (e) H. Zhang and A. Lei, Asian
J. Org. Chem., 2018, 7, 1164; (f) O. M. Mulina, A. I. Ilovaisky and
A. O. Terent’ev, Eur. J. Org. Chem., 2018, 4648; (g) S. Liang, K. Xu,
C.-C. Zeng, H.-Y. Tian and B.-G. Sun, Adv. Synth. Catal., 2018, 360, 4266.
3 K. Fujiki, N. Tanifuji, Y. Sasaki and T. Yokoyama, Synthesis, 2002, 343.
4 Z. Peng, X. Zheng, Y. Zhang, D. An and W. Dong, Green Chem., 2018,
20, 1760.
17 A. G. Lavekar, D. Equbal, Saima and A. K. Sinha, Adv. Synth. Catal.,
2018, 360, 180.
18
(a) I.V.Alabugin,V. I. Timokhin, J. N.Abrams, M. Manoharan, R.Abrams
and I. Ghiviriga, J. Am. Chem. Soc., 2008, 130, 10984; (b) K. Gilmore,
B. Gold, R. J. Clark and I. V. Alabugin, Aust. J. Chem., 2013, 66, 336.
19 Z. Guo, W.-T. Wei, G. Zhou, X.-D. Xu and G.-P. Chen, Synlett, 2018,
29, 2076.
20 Q. T. Do, D. Elothmani, G. Le Guillanton and J. Simonet, Tetrahedron
Lett., 1997, 38, 3383.
21 D. Witt, Synthesis, 2008, 2491.
5 G. Liang, M. Liu, J. Chen, J. Ding, W. Gao and H. Wu, Chin. J. Chem.,
2012, 30, 1611.
6 T. Keshari, R. Kapoorr and L. D. S. Yadav, Synlett, 2016, 27, 1878.
7 (a) N. Taniguchi, Eur. J. Org. Chem., 2014, 5691; (b) N. Taniguchi,
J. Org. Chem., 2015, 80, 1764.
22 (a) M. Hirano, S. Yakabe, K. Ando and T. Morimoto, J. Chem. Res.,
1998, 816; (b) B. Zeynizadeh, J. Chem. Res., 2002, 564; (c) D. R. Dreyer,
H.-P. Jia, A. D. Todd, J. Geng and C. W. Bielawski, Org. Biomol. Chem.,
2011, 9, 7292.
8 G.-Y. Zhang, S.-S. Lv, A. Shoberu and J.-P. Zou, J. Org. Chem., 2017,
82, 9801.
9 Q. Chen,Y. Huang, X. Wang, J. Wu and G.Yu, Org. Biomol. Chem., 2018,
16, 1713.
Received: 2nd October 2018; Com. 18/5702
– 82 –