ACS Catalysis
Page 4 of 6
Chart 3. Site- and Enantioselective Epoxidation of β,γ,δ,ε,-
Unsaturated Carboxylic Acids 18a
1
ACKNOWLEDGMENT
2
3
4
This work was supported by Grant-in-Aid for Scientific Research
(No. 17H06142).
5
6
REFERENCES
(1) For a review on Sharpless asymmetric epoxidation, see: Katsuki,
T.; Martin, V. S. Asymmetric Epoxidation of Allylic Alcohols: the
Katsuki–Sharpless Epoxidation Reaction. Org. React. 1996, 48, 1-299.
(2) For reviews on enantioselective epoxidation, see: (a) Bryliakov,
K. P. Catalytic Asymmetric Oxygenations with the Environmentally
Benign Oxidants H2O2 and O2. Chem. Rev. 2017, 117, 11406-11459.
(b) Wang, C.; Yamamoto, H. Asymmetric Epoxidation Using
Hydrogen Peroxide as Oxidant. Chem. Asian. J. 2015, 10, 2056-2068.
(c) Davis, R. L.; Stiller, J.; Naicker, T.; Jiang, H.; Jørgensen, K. A.
Asymmetric Organocatalytic Epoxidations: Reactions, Scope,
Mechanisms, and Applications. Angew. Chem., Int. Ed. 2014, 53, 7406-
7426. (d) Zhu, Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Organocatalytic
Asymmetric Epoxidation and Aziridination of Olefins and Their
Synthetic Applications. Chem. Rev. 2014, 114, 8199-8256. (e) Weiβ,
K. M.; Tsogoeva, S. B. Enantioselective Epoxidation of Electron-
Deficient Olefins: An Organocatalytic Approach. Chem. Rec. 2011, 11,
18-39. (f) Faveri, G. D.; Ilyashenko, G.; Watkinson, M. Recent
Advances in Catalytic Asymmetric Epoxidation Using the
Environmentally Benign Oxidant Hydrogen Peroxide and its
Derivatives. Chem. Soc. Rev. 2011, 40, 1722-1760. (g) Wong, O. A.;
Shi, Y. Organocatalytic Oxidation. Asymmetric Epoxidation of Olefins
Catalyzed by Chiral Ketones and Iminium Salts. Chem. Rev. 2008, 108,
3958-3987. (h) Chatterjee, D. Asymmetric Epoxidation of Unsaturated
Hydrocarbons Catalyzed by Ruthenium Complexes. Coord. Chem.
Rev. 2008, 252, 176-198. (i) McGarrigle, E. M.; Gilheany, D. G.
Chromium- and Manganese-salen Promoted Epoxidation of Alkenes.
Chem. Rev. 2005, 105, 1563-1602. (j) Xia, Q.-H.; Ge, H.-Q.; Ye, C.-
P.; Liu, Z.-M.; Su, K.-X. Advances in Homogeneous and
Heterogeneous Catalytic Asymmetric Epoxidation. Chem. Rev. 2005,
105, 1603-1662. (k) Jørgensen, K. A. Transition-Metal-Catalyzed
Epoxidations. Chem. Rev. 1989, 89, 431-458.
(3) Katsuki, T.; Sharpless, K. B. The First Practical Method for
Asymmetric Epoxidation. J. Am. Chem. Soc. 1980, 102, 5974-5976.
(4) (a) Bhadra, S.; Yamamoto, H. Substrate Directed Asymmetric
Reactions. Chem. Rev. 2018, 118, 3391-3446. (b) Sawano, T.;
Yamamoto, H. Substrate-Directed Catalytic Selective Chemical
Reactions. J. Org. Chem. 2018, 83, 4889−4904. (c) Rousseau, G.;
Breit, B. Removable Directing Groups in Organic Synthesis and
Catalysis. Angew. Chem., Int. Ed. 2011, 50, 2450-2494. (d) Breit, B.;
Schmidt, Y. Directed Reactions of Organocopper Reagents. Chem.
Rev. 2008, 108, 2928-2951. (e) Hoveyda, A. H.; Evans, D. A.; Fu, G.
C. Substrate-Directable Chemical Reactions. Chem. Rev. 1993, 93,
1307-1370. (f) Mulzer, J. Basic Principles of Asymmetric Synthesis.
In Comprehensive Asymmetric Catalysis I; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: Berlin, 1999; pp 34−97.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
aReaction conditions: 17 (0.20 mmol), 2 (0.30 mmol), Ti(Oi-Pr)4
(5 mol%), (R)-L (2.75 mol%), DCM (0.4 M) at r.t. for 20 h.
bIsolated yield of 18. cThe ee was determined by chiral HPLC
analysis.
In summary, we have first developed a binuclear titanium
complex-catalyzed enantioselective epoxidation of β,γ-
unsaturated carboxylic acids, followed by intramolecular
cyclization to provide γ-lactones in high enantioselectivity and
perfect diastereoselectivity. The epoxidation can be applied to
not only a range of β,γ-unsaturated carboxylic acids but also 3-
acetic indole derivatives to afford γ-lactones in a highly
enantioselective manner. A chiral lactone with three adjacent
stereocenters was obtained via kinetic resolution. By use of the
directing effect of the carboxylic acid, the regioselective
epoxidation of unsaturated carboxylic acids with two alkenes
was achieved, demonstrating the utility of the enantioselective
epoxidation of β,γ-unsaturated carboxylic acids for organic
synthesis.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental procedures, characterization of products, and
spectroscopic data (PDF)
Crystal data for 3f (CIF)
(5) Olivares-Romero, J. L.; Li, Z.; Yamamoto, H. Hf(IV)-Catalyzed
Enantioselective Epoxidation of N-Alkenyl Sulfonamides and N-Tosyl
Imines. J. Am. Chem. Soc. 2012, 134, 5440-5443.
(6) For a review on BHA ligands, see: Li, Z.; Yamamoto, H.
Hydroxamic Acids in Asymmetric Synthesis. Acc. Chem. Res. 2013,
46, 506-518.
(7) For selected books and reviews, see: (a) Mao, B.; Fañanás-
Mastral, M.; Feringa, B. L. Catalytic Asymmetric Synthesis of
Butenolides and Butyrolactones. Chem. Rev. 2017, 117, 10502-10566.
(b) Yanai, H. Green and Catalytic Methods for γ-Lactone Synthesis. In
Green Synthetic Approaches for Biologically Relevant Heterocycles;
Brahmachari, G., Ed.; Elsevier: Amsterdam, 2015; pp 257-285. (c)
Schulz, S.; Hötling, S. The Use of the Lactone Motif in Chemical
Communication. Nat. prod. Rep. 2015, 32, 1042-1066. (d) Natural
Lactones and Lactams: Synthesis, Occurrence and Biological Activity;
Janecki, T., Ed.; Wiley-VCH: Weinheim, 2013. (e) Lorente, A.;
Lamariano-Merketegi, J.; Albericio, F.; Álvarez, M. Tetrahydrofuran-
AUTHOR INFORMATION
Corresponding Author
*Email: tsawano@isc.chubu.ac.jp (T. Sawano).
*Email: hyamamoto@isc.chubu.ac.jp (H. Yamamoto).
ORCID
Takahiro Sawano: 0000-0001-6851-9579
Hisashi Yamamoto: 0000-0001-5384-9698
Funding Sources
Grant-in-Aid for Scientific Research (No. 17H06142).
Notes
The authors declare no competing financial interest.
ACS Paragon Plus Environment