Inorganic Chemistry
Article
heterometallic Cu Mn cluster with Td symmetry and high-spin
in neocuproine: approach to an N,O-ligated Cu6 cage phenyl-
silsesquioxane. Organometallics 2018, 37, 168−171. (e) Dronova, M.
S.; Bilyachenko, A. N.; Yalymov, A. I.; Kozlov, Y. N.; Shul’pina, L. S.;
Korlyukov, A. A.; Arkhipov, D. E.; Levitsky, M. M.; Shubina, E. S.;
Shul’pin, G. B. Solvent-controlled synthesis of tetranuclear cage-like
copper(II) silsesquioxanes. Remarkable features of the cage structures
and their high catalytic activity in oxidation with peroxides. Dalton
Trans. 2014, 43, 872−882. (f) Korlyukov, A. A.; Vologzhanina, A. V.;
Buzin, M. I.; Sergienko, N. V.; Zavin, B. G.; Muzafarov, A. M. Cu(II)-
silsesquioxanes as secondary building units for construction of
coordination polymers: a case study of cesium-containing com-
pounds. Cryst. Growth Des. 2016, 16, 1968−1977.
17
28
ground state. J. Am. Chem. Soc. 2007, 129, 1014−1015.
(4) (a) Han, Y. F.; Jia, W. G.; Yu, W. B.; Jin, G. X. Stepwise
formation of organometallic macrocycles, prisms and boxes from Ir,
Rh and Ru-based half-sandwich units. Chem. Soc. Rev. 2009, 38,
3419−3434. (b) Wang, Z.; Su, H. F.; Tan, Y. Z.; Schein, S.; Lin, S. C.;
Liu, W.; Wang, S. A.; Wang, W. G.; Tung, C. H.; Sun, D.; Zheng, L. S.
Assembly of silver trigons into a buckyball-like Ag180 nanocage. Proc.
Natl. Acad. Sci. U. S. A. 2017, 114, 12132−12137. (c) Murugesu, M.;
Cler
́
ac, R.; Anson, C. E.; Powell, A. K. A new type of oxygen bridged
II
5−
Cu
aggregate formed around a central {KCl6} unit. Chem.
3
6
Commun. 2004, 1598−1599. (d) Gui, L. C.; Wang, X. J.; Ni, Q. L.;
Wang, M.; Liang, F. P.; Zou, H. H. Nanospheric
(8) (a) Bilyachenko, A. N.; Levitsky, M. M.; Yalymov, A. I.;
Korlyukov, A. A.; Vologzhanina, A. V.; Kozlov, Y. N.; Shul’pina, L. S.;
Nesterov, D. S.; Pombeiro, A. J. L.; Lamaty, F.; Bantreil, X.; Fetre, A.;
Liu, D. Y.; Martinez, J.; Long, J.; Larionova, J.; Guari, Y.; Trigub, A.
L.; Zubavichus, Y. V.; Golub, I. E.; Filippov, O. A.; Shubina, E. S.;
Shul’pin, G. B. A heterometallic (Fe Na ) cage-like silsesquioxane:
4
+
[
M (OH) (maleate) (Me NH) ] clusters (M = Co, Ni) with
20 12 12 2 12
O symmetry. J. Am. Chem. Soc. 2012, 134, 852−854. (e) Sheikh, J.
h
A.; Adhikary, A.; Jena, H. S.; Biswas, S.; Konar, S. High nuclearity
II
II
(
octa-, dodeca-, and pentadecanuclear) metal (M = Co , Ni )
phosphonate cages: synthesis, structure, and magnetic behavior. Inorg.
Chem. 2014, 53, 1606−1613. (f) Zheng, S. T.; Zhang, J.; Li, X. X.;
Fang, W. H.; Yang, G. Y. Cubic polyoxometalate-organic molecular
cage. J. Am. Chem. Soc. 2010, 132, 15102−15103.
6
8
synthesis, structure, spin glass behavior and high catalytic activity.
RSC Adv. 2016, 6, 48165−48180. (b) Bilyachenko, A. N.; Levitsky,
M. M.; Yalymov, A. I.; Korlyukov, A. A.; Khrustalev, V. N.;
Vologzhanina, A. V.; Shul’pina, L. S.; Ikonnikov, N. S.; Trigub, A.
E.; Dorovatovskii, P. V.; Bantreil, X.; Lamaty, F.; Long, J.; Larionova,
J.; Golub, I. E.; Shubina, E. S.; Shul’pin, G. B. Cage-like Fe, Na-
germsesquioxanes: structure, magnetism, and catalytic activity. Angew.
Chem., Int. Ed. 2016, 55, 15360−15363.
(5) (a) Liu, J. L.; Chen, Y. C.; Tong, M. L. Symmetry strategies for
high performance lanthanide-based single-molecule magnets. Chem.
Soc. Rev. 2018, 47, 2431−2453. (b) Zheng, X. Y.; Kong, X. J.; Zheng,
Z. P.; Long, L. S.; Zheng, L. S. High-nuclearity lanthanide-containing
clusters as potential molecular magnetic coolers. Acc. Chem. Res. 2018,
5
1, 517−525. (c) Mu
̈
ller, A.; Beckmann, E.; Bo
̈
gge, H.; Schmidtmann,
(9) (a) Bilyachenko, A. N.; Yalymov, A.; Dronova, M.; Korlyukov, A.
A.; Vologzhanina, A. V.; Es’kova, M. A.; Long, J.; Larionova, J.; Guari,
Y.; Dorovatovskii, P. V.; Shubina, E. S.; Levitsky, M. M. Family of
polynuclear nickel cagelike phenylsilsesquioxanes; features of periodic
networks and magnetic properties. Inorg. Chem. 2017, 56, 12751−
12763. (b) Bilyachenko, A. N.; Yalymov, A. I.; Korlyukov, A. A.;
Long, J.; Larionova, J.; Guari, Y.; Vologzhanina, A. V.; Es’kova, M. A.;
Shubina, E. S.; Levitsky, M. M. Unusual penta- and hexanuclear
Ni(II)-based silsesquioxane polynuclear complexes. Dalton Trans.
2016, 45, 7320−7327. (c) Kulakova, A. N.; Bilyachenko, A. N.;
Korlyukov, A. A.; Long, J.; Levitsky, M. M.; Shubina, E. S.; Guari, Y.;
Larionova, J. New Ni Na -phenylgermsesquioxane architecture:
M.; Dress, A. Inorganic chemistry goes protein size: A Mo nano-
3
68
hedgehog initiating nanochemistry by symmetry breaking. Angew.
Chem., Int. Ed. 2002, 41, 1162−1167. (d) Zhang, Z. M.; Yao, S.; Li, Y.
́
G.; Clerac, R.; Lu, Y.; Su, Z. M.; Wang, E. B. Protein-sized chiral Fe
168
cages with NbO-type topology. J. Am. Chem. Soc. 2009, 131, 14600−
4601. (e) Suzuki, K.; Tominaga, M.; Kawano, M.; Fujita, M. Self-
assembly of an M6L12 coordination cube. Chem. Commun. 2009,
638−1640. (f) Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa,
1
1
T.; Ozeki, T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Finite,
spherical coordination networks that self-organize from 36 small
components. Angew. Chem., Int. Ed. 2004, 43, 5621−5625. (g) Sun,
Q. F.; Iwasa, J.; Ogawa, D.; Ishido, Y.; Sato, S.; Ozeki, T.; Sei, Y.;
Yamaguchi, K.; Fujita, M. Self-assembled M L polyhedra and their
4
2
synthesis, structure and slow dynamic behaviour. Dalton Trans.
2018, 47, 6893−6897.
2
4 48
sharp structural switch upon subtle ligand variation. Science 2010, 328,
144−1147. (h) Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka,
T.; Fujita, M. Self-assembly of tetravalent Goldberg polyhedra from
44 small components. Nature 2016, 540, 563−567.
6) (a) Levitsky, M. M.; Bilyachenko, A. N. Modern concepts and
methods in the chemistry of polyhedral metallasiloxanes. Coord.
Chem. Rev. 2016, 306, 235−269. (b) Levitsky, M. M.; Yalymov, A. I.;
Kulakova, A. N.; Petrov, A. A.; Bilyachenko, A. N. Cage-like
metallasilsesquioxanes in catalysis: A review. J. Mol. Catal. A: Chem.
(10) (a) Igonin, V. A.; Shchegolikhina, O. I.; Lindeman, S. V.;
Levitsky, M. M.; Struchkov, Y. T.; Zhdanov, A. A. Novel class of
transition metal coordination compounds with macrocyclic organo-
siloxanolate ligands; their synthesis and crystal structure. J. Organomet.
Chem. 1992, 423, 351−360. (b) Bilyachenko, A. N.; Yalymov, A. I.;
Levitsky, M. M.; Korlyukov, A. A.; Es’kova, M. A.; Long, J.; Larionova,
J.; Guari, Y.; Shul’pina, L. S.; Ikonnikov, N. S.; Trigub, A. L.;
Zubavichus, Y. V.; Golub, I. E.; Shubina, E. S.; Shul’pin, G. B. First
cage-like pentanuclear Co(II)-silsesquioxane. Dalton Trans. 2016, 45,
13663−13666. (c) Bilyachenko, A. N.; Yalymov, A. I.; Korlyukov, A.
A.; Long, J.; Larionova, J.; Guari, Y.; Zubavichus, Y. V.; Trigub, A. L.;
Shubina, E. S.; Eremenko, I. L.; Efimov, N. N.; Levitsky, M. M.
Heterometallic Na Co phenylsilsesquioxane exhibiting slow dynamic
1
1
(
2
017, 426, 297−304. (c) Levitsky, M. M.; Bilyachenko, A. N.;
Shul’pin, G. B. Oxidation of C-H compounds with peroxides catalyzed
by polynuclear transition metal complexes in Si- or Ge-sesquioxane
frameworks: A review. J. Organomet. Chem. 2017, 849, 201−218.
6
3
(
7) (a) Tan, G. W.; Yang, Y.; Chu, C. H.; Zhu, H. P.; Roesky, H. W.
behavior in its magnetization. Chem. - Eur. J. 2015, 21, 18563−18565.
(11) Sergienko, N. V.; Korlyukov, A. A.; Arkhipov, D. E.; Novikov,
V. V.; Eskova, M. A.; Zavin, B. G. Metallosiloxanes containing period
5 transition metals: synthesis and X-ray studies of three cadmium
siloxanes. Mendeleev Commun. 2016, 26, 344−346.
Cu O Si R : Organic soluble 56-membered copper(I) siloxane cage
24
24
8 8
and its use in homogeneous catalysis. J. Am. Chem. Soc. 2010, 132,
2231−12233. (b) Bilyachenko, A. N.; Kulakova, A. N.; Levitsky, M.
1
M.; Petrov, A. A.; Korlyukov, A. A.; Shul’pina, L. S.; Khrustalev, V. N.;
Dorovatovskii, P. V.; Vologzhanina, A. V.; Tsareva, U. S.; Golub, I. E.;
Gulyaeva, E. S.; Shubina, E. S.; Shul’pin, G. B. Unusual tri-, hexa-, and
nonanuclear Cu(II) cage methylsilsesquioxanes: synthesis, structures,
and catalytic activity in oxidations with peroxides. Inorg. Chem. 2017,
(12) (a) Gavioli, G.; Battistuzzi, R.; Santi, P.; Zucchi, C.; Palyi, G.;
Ugo, R.; Vizi-Orosz, A.; Shchegolikhina, O.; Pozdniakova, Y.;
Lindeman, S.; Zhdanov, A.; Palyi, G. Bimetallic siloxane cluster of
6
higher valent transition metals: Na{[η -cyclo-(PhSiO ) ] Co Ni (μ -
2
6
2
2
4
6
5
6, 4093−4103. (c) Bilyachenko, A. N.; Khrustalev, V. N.;
Cl)}. J. Organomet. Chem. 1995, 485, 257−266. (b) Astakhov, G. S.;
Bilyachenko, A. N.; Levitsky, M. M.; Korlyukov, A. A.; Zubavichus, Y.
V.; Dorovatovskii, P. V.; Khrustalev, V. N.; Vologzhanina, A. V.;
Zubavichus, Y. V.; Vologzhanina, A. V.; Astakhov, G. S.; Gutsul, E.
I.; Shubina, E. S.; Levitsky, M. M. High-nuclearity (Cu -based) cage
silsesquioxanes: synthesis and structural study. Cryst. Growth Des.
8
II
Shubina, E. S. Tridecanuclear Cu 11Na2 cagelike silsesquioxanes.
2
018, 18, 2452−2457. (d) Bilyachenko, A. N.; Levitsky, M. M.;
Cryst. Growth Des. 2018, 18, 5377−5384.
(13) (a) Dubchak, I. L.; Shklover, V. E.; Levitskii, M. M.; Zhdanov,
A. A.; Struchkov, Y. T. Crystal structure of siloxanes and silazanes. J.
Khrustalev, V. N.; Zubavichus, Y. V.; Shul’pina, L. S.; Shubina, E. S.;
Shul’pin, G. B. Mild and regioselective hydroxylation of methyl group
G
Inorg. Chem. XXXX, XXX, XXX−XXX