M. Sova et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1376–1379
1379
1
1
2
2
2
2
8. Roper, D. I.; Huyton, T.; Vagin, A.; Dodson, G. Proc. Natl. Acad. Sci. U.S.A. 2000,
9
7, 8921.
9. Horton, J. R.; Bostock, J. M.; Chopra, I.; Hesse, L.; Phillips, S. E. V.; Adams, D. J.;
Johnson, A. P.; Fishwick, C. W. G. Bioorg. Med. Chem. Lett. 2003, 13, 1557.
0. Besong, G. E.; Bostock, J. M.; Stubbings, W.; Chopra, I.; Roper, D. I.; Lloyd, A. J.;
Fishwick, C. W. G.; Johnson, A. P. Angew. Chem. Int. Ed. 2005, 44, 6403.
1. Ali, M. A.; Bhogal, N.; Findlay, J. B. C.; Fishwick, C. W. G. J. Med. Chem. 2005, 48,
5655.
2. Heikkila, T.; Thirumalairajan, S.; Davies, M.; Parsons, M. R.; McConkey, A. G.;
Fishwick, C. W. G.; Johnson, A. P. Bioorg. Med. Chem. Lett. 2006, 16, 88.
3. Heikkila, T.; Ramsey, C.; Davies, M.; Galtier, C.; Stead, A. M. W.; Johnson, A. P.;
Fishwick, C. W. G.; Boa, A. N.; McConkey, G. A. J. Med. Chem. 2007, 50, 186.
4. Agarwal, A. K.; Johnson, A. P.; Fishwick, C. W. G. Tetrahedron 2008, 64, 10049.
5. Beaulieu, P. L.; Wernic, D. J. Org. Chem. 1996, 61, 3635.
2
2
2
2
2
2
3
3
6. Datta, A.; Veeresa, G. J. Org. Chem. 2000, 65, 7609.
7. Abbenante, G.; Fairlie, D. P. Med. Chem. 2005, 1, 71.
8. Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305.
9. Babi cˇ , A.; Sova, M.; Gobec, S.; Pe cˇ ar, S. Tetrahedron Lett. 2006, 47, 1733.
0. Sova, M.; Babi cˇ , A.; Pe cˇ ar, S.; Gobec, S. Tetrahedron 2007, 63, 141.
1. Spectral data for compounds 6–7: 1-(4-methoxyphenylsulfonamido)-3-
morpholinopropan-2-yl phenyl hydrogen phosphate (6a): Yield 35%; white
crystals (hygroscopic), mp 96–100 °C; IR (KBr):
mmax 3447, 2361, 2343, 1719,
1
5
639, 1597, 1492, 1406, 1264, 1158, 1094, 1059, 1028, 927, 782, 640, 612, and
À1
1
64 cm
;
H NMR (D
2
O, NaOD) d (ppm) 2.39–2.46 (m, 5H, CH
N), 2.76 (dd, 1H, J = 8.5 and 12.5 Hz,
), 3.05 (dd, 1H, J = 3.8 and 12.5 Hz, NHCH ), 3.62 (t, 4H, J = 4.5 Hz,
-morpholine), 3.77 (s, 3H, CH ), 4.28–4.35 (m, 1H, CH), 6.93–7.01 (m,
a 2 2
N(CH ) -
morpholine), 2.55–2.61 (m, 1H, CH
NHCH
O(CH
3
b
a
b
)
2 2
4
7
H, Ar), 7.28 (t, 1H, J = 7.3 Hz, Ar), 7.28 (dd, 2H, J = 7.8 and 7.8 Hz, Ar), 7.58–
.63 (m, 2H, Ar), NH and OH not observed, exchanged. 31P NMR (D
O, NaOD) d
PSNa (M+Na ): 509.1123. Found:
2
Figure 6. Dose dependence of inhibition of VanA and DdlB by compounds 7a and
b. Data were fitted with Prism 4.0 by non-linear regression to the equation given
above, and are means ± standard error from assays carried out in triplicate for 7a
and duplicate for 7b.
+
(
5
ppm) À4.21. ESI HRMS Calcd for C20
H
27
N
2
O
8
7
3
4
R
09.1138. HPLC: t = 15.321 min (95.7%).
1
-(4-Fluorophenylsulfonamido)-3-morpholinopropan-2-yl
phenyl
hydrogen
phosphate (6b): Yield 47%; white crystals, mp 125–129 °C; IR (KBr):
m
max
À1
1
3
446, 1565, 1414, 1265, 1155, 1096, 896, 840, 760, and 552 cm
(D O, NaOD) d (ppm) 2.36–2.42 (m, 4H, N(CH -morpholine), 2.51–2.56 (m,
H, CH N), 2.73 (dd, 1H, J = 8.7 and 12.3 Hz, NHCH ), 2.99 (dd, 1H, J = 3.2 and
2.3 Hz NHCH ), 3.58 (t, 4H, J = 4.3 Hz, O(CH -morpholine), 4.24–4.31 (m, 1H,
; H NMR
for inhibitory activity against both VanA and DdlB. The designed
compounds represent an important starting point for further opti-
mization and modifications, to improve these inhibitory activities
against VanA and DdlB. These types of inhibitors have the potential
to be developed into drugs that would reverse bacterial resistance
to vancomycin. Furthermore, the potency of these compounds
against both VanA and DdlB suggest that it will be possible to
develop broad-spectrum antimicrobials that target both Gram-
negative and Gram-positive infections.
2
2 2
)
2
1
2
a
b
2 2
)
CH), 6.98 (d, 2H, J = 7.8 Hz, Ar), 7.04–7.14 (m, 3H, Ar), 7.28 (dd, 2H, J = 7.5 and
7.5 Hz, Ar), 7.60–7.65 (m, 2H, Ar), NH and OH not observed, exchanged. 3
1
P
À
NMR (D
73.0948. Found: 473.0934. HPLC: t
-(4-Methoxyphenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate
(7a): Yield 30%; white crystals (hygroscopic), mp 119–124 °C; IR (KBr):
2
O, NaOD) d (ppm) À4.24. ESI HRMS Calcd for C19
H 42 3FN
2 7
O PS (M-H ):
4
1
R
= 15.68 min (95.1%).3
m
max
3
1
2
433, 2360, 2341, 1711, 1640, 1564, 1501, 1412, 1303, 1262, 1158, 1094, 1058,
À1
1
021, 803, 668, 640, 611, and 561 cm
.15 (m, 2H, CH N), 2.24–2.34 (m, 4H, N(CH
), 2.98 (dd, 1H, J = 3.8 and 12.3 Hz, NHCH
-morpholine), 3.76 (s, 3H, CH ), 4.00–4.05 (m, 1H, CH), 6.97 (d, 2H,
J = 8.6 Hz, Ar), 7.61 (d, 2H, J = 8.6 Hz, Ar), NH and 2OH not observed, exchanged.
;
H NMR (D
-morpholine), 2.66 (dd, 1H, J = 7.8
), 3.52–3.55 (m, 4H,
2
O, NaOD) d (ppm) 2.08–
2
2 2
)
and 12.3 Hz, NHCH
O(CH
a
b
)
2 2
3
Acknowledgments
31
À
P NMR (D
409.0835. Found: 409.0822. HPLC: tR = 8.947 min (97.6%).3
1-(4-Fluorophenylsulfonamido)-3-morpholinopropan-2-yl dihydrogen phosphate
7b): Yield 40%; white crystals, mp 130–135 °C; IR (KBr): max 3431, 2361, 2342,
717, 1640, 1593, 1496, 1406, 1327, 1294, 1272, 1240, 1157, 1091, 1030, 982,
2
22 2 8
O, NaOD) d (ppm) 3.95. ESI HRMS Calcd for C1 44 H N O PS (M-H ):
This work was supported by the European Union FP6 Integrated
Project EUR-INTAFAR (Project No. LSHM-CT-2004-512138) and the
Ministry of Higher Education, Science and Technology of the
Republic of Slovenia. The authors thank Dr. Chris Berrie for critical
reading of the manuscript.
(
m
1
8
À1
1
42, 775, 668, 640, 612, and 550 cm
N(CH -morpholine), 2.74 (dd, 1H, J = 8.2 and 12.0 Hz, NHCH
dd, 1H, J = 4.1 and 12.0 Hz, NHCH ), 3.63 (t, 4H, J = 3.9 Hz, O(CH -morpholine),
.09–4.14(m, 1H, CH), 7.21(dd, 2H, J = 8.8and 8.8 Hz, Ar), 7.74 (dd, 2H, J = 5.7 and
;
H NMR (D
2
O, NaOD) d (ppm) 2.21-2.48
(m, 6H, CH
(
2
2
)
2
a
), 3.07
b
2 2
)
4
8
3
References and notes
31
.0 Hz, Ar), NH and 2OH not observed, exchanged. P NMR (D
.95. ESI HRMS Calcd for C13
2
O, NaOD) d (ppm)
À
2
H419FN O
7
PS (M-H ): 397.0635. Found: 397.0640.
1
.
Sievert, D. M.; Rudrik, J. T.; Patel, J. B.; McDonald, L. C.; Wilkins, M. J.; Hageman,
J. C. Clin. Infect. Dis. 2008, 46, 668.
HPLC: t
R
= 8.920 min (97.9%).3
32. Pyruvate kinase/lactate dehydrogenase coupled assay (PK/LDH pathway) used
ADP for the formation of pyruvate from phosphoenolpyruvate (PEP) by the
action of PK. LDH then catalyses the reduction of pyruvate to lactate by NADH,
so by using this assay, ligase activity can be measured spectrophotometrically
by following a decrease in absorbance of NADH at 340 nm, concommitant with
2.
3.
4.
5.
Barna, J. C. J.; Williams, D. H. Annu. Rev. Microbiol. 1984, 38, 339.
Schafer, M.; Schneider, T. R.; Sheldrick, G. M. Structure 1996, 4, 1509.
Murray, B. E. N. Engl. J. Med. 2000, 342, 710.
Barreteau, H.; Kova cˇ , A.; Boniface, A.; Sova, M.; Gobec, S.; Blanot, D. FEMS
Microbiol. Rev. 2008, 32, 168.
+
its oxidation to NAD . For DdlB, all of the assays were carried out in a final
6
7
8
.
.
.
Walsh, C. T.; Fisher, S. L.; Park, I.-S.; Prahalad, M.; Wu, Z. Chem. Biol. 1996, 3, 21.
Arthur, M.; Courvalin, P. Antimicrob. Agents Chemother. 1993, 37, 1563.
Bugg, T. D. H.; Wright, G. D.; Dutka-Malen, S.; Arthur, M.; Courvalin, P.; Walsh,
C. T. Biochemistry 1991, 30, 10408.
volume of 200
KCl, pH 7.5, 10% (v/v) DMSO with or without the compound, 2 mM PEP, 0.2 mM
ATP, 1.972 units/mL PK, 2.46 units/mL LDH, 150 M NADH and 4.3 mM -Ala.
Assays were followed spectrophotometrically at 37 °C, at 340 nm, and the
reaction was initiated by the addition of DdlB (1.2 g/mL), which gave an
2
lL and initially contained 100 mM Hepes, 10 mM MgCl , 10 mM
l
D
9
.
Bugg, T. D.; Dutka-Malen, S.; Arthur, M.; Courvalin, P.; Walsh, C. T. Biochemistry
l
1
991, 30, 2017.
initial slope of À0.210 ± 0.032 (n = 6, uninhibited reaction). For VanA, the assays
1
1
0. Park, I.-S.; Lin, C.-H.; Walsh, C. T. Biochemistry 1996, 35, 10464.
1. Healy, V. L.; Mullins, L. S.; Li, X.; Hall, S. E.; Raushel, F. M.; Walsh, C. T. Chem.
Biol. 2000, 7, 505.
were carried out in the same manner as for DdlB above, except that the
concentrations of the substrates in this case were 8 mM
D-Ala, 1.78 mM
D-Lac,
and the reaction was initiated by the addition of VanA (37.5
l
g/mL), which gave
1
2. Healy, V. L.; Lessard, I. A. D.; Roper, D. I.; Knox, J. R.; Walsh, C. T. Chem. Biol.
an initial slope of À0.215 ± 0.019 (n = 6, uninhibited reaction).
2
000, 7, R109.
33. Liu, S.; Chang, J. S.; Herberg, J. T.; Horng, M.-M.; Tomich, P. K.; Lin, A. H.;
Marotti, K. R. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15178.
1
3. Ellsworth, B. A.; Tom, N. J.; Barlett, P. A. Chem. Biol. 1996, 3, 37.
4. Pratt, S. D.; Xuei, X.; Mackinnon, A. C.; Nilius, A. M.; Hensey-Rudloff, D. M.;
Zhong, P.; Katz, L. J. Biomol. Screen. 1997, 2, 241.
1
34. HPLC analyses were performed on an Agilent Technologies HP 1100 instrument
with G1365B UV-vis detector (254 nm), using
a Luna C18 column
1
5. Bugg, T. D. H. In Comprehensive Natural Products Chemistry; Pinto, B. M., Ed.;
Elsevier: Oxford, 1999; Vol. 3, pp. 241–294.
(4.6 Â 250 mm) at a flow rate of 1 mL/min. The eluant was a mixture of 0.1%
TFA in water (A) and acetonitrile (B). The gradient was from 10% B to 80% B in
30 min (for compounds 6a and 6b) or 5% B to 95% B in 15 min (for compounds
7a and 7b).
1
6. Marshall, E. Science 2008, 321, 364.
1
7. Gillett, V. J.; Newell, W.; Mata, P.; Myatt, G.; Sike, S.; Zsoldos, Z.; Johnson, A. P. J.
Chem. Inf. Comput. Sci. 1994, 34, 207.