[11] M.J. Genin, D.A. Allwine, D.J. Anderson, et al., Substituent effects on the antibacterial activity of nitrogen-carbon-linked
(azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms haemophilus influenzae and
moraxella catarrhalis, J. Med. Chem. 43 (2000) 953-970.
[12] R.J. Bochis, J.C. Chabala, E. Harris, et al., Benzylated 1,2,3-triazoles as anticoccidiostats, J. Med. Chem. 34 (1991) 2843-2852.
[13] J.L. Kelley, C.S. Koble, R.G. Davis, et al., 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c]pyridines: synthesis and anticonvulsant
activity, J. Med. Chem. 38 (1995) 4131-4134.
[14] R. Raj, P. Singh, P. Singh, et al., Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras:
synthesis and antimalarial evaluation, Eur. J. Med. Chem. 62 (2013) 590-596.
[15] A.K. Jordao, P.P. Afonso, V.F. Ferreira, et al., Antiviral evaluation of N-amino-1,2,3-triazoles against cantagalo virus replication in
cell culture, Eur. J. Med. Chem. 44 (2009) 3777-3783.
[16] B.L. Wilkinson, H. Long, E. Sim, et al., Synthesis of arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall
biosynthesis, Bioorg. Med. Chem. Lett. 18 (2008) 6265-6267.
[17] M. Kume, T. Kubota, Y. Kimura, et al., Orally active cephalosporins II. Synthesis and structure activity relationships of new 7-β-[(Z)-
2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]-cephalosporins with 1,2,3-triazole in C-3 side chain, J. Antibiot. 46 (1993) 177-
192.
[18] P. Liu, X. Xu, L. Chen, et al., Discovery and SAR study of hydroxyacetophenone derivatives as potent, non-steroidal farnesoid X
receptor (FXR) antagonists, Bioorg. Med. Chem. 22 (2014) 1596-1607.
[19] R. Ballini, L. Barboni, D. Fiorini, et al., One pot synthesis of 3,5-alkylated acetophenone and methyl benzoate derivatives via an
anionic domino process, Chem.Commun. (2005) 2633-2634.
[20] A. Bali, K. Sharma, A. Bhalla, S. Bala, et al., Synthesis, evaluation and computational studies on a series of acetophenone based 1-
(aryloxypropyl)-4-(chloroaryl) piperazines as potential atypical antipsychotics, Eur. J. Med. Chem. 45 (2010) 2656-2662.
[21] (a) S. Katade, U. Phalgune, S. Biswas, et al., Microwave studies on synthesis of biologically active chalcone derivatives, Indian J.
Chem. 47B (2008) 927-931;
(b) V. Kotra, S. Ganapaty, R.S. Adapa, Synthesis of a new series of quinolinyl chalcones as anticancer and anti-inflammatory agents,
Indian J. Chem. 49B (2010) 1109-1116.
[22] N. A. Jinzeel, Synthesis, characterization and evaluation the biological activity of new heterocycle compounds derived from 4-
Aminoacetophenone, Chem. Mater. Res. 7 (2015) 48-52.
[23] (a) M.H. Shaikh, D.D. Subhedar, L. Nawale, et al., 1,2,3-Triazole derivatives as antitubercular agents; Synthesis, biological evaluation
and molecular docking study, Med. Chem. Commun. 6 (2015) 1104-1116;
(b) M.H. Shaikh, D.D. Subhedar, M. Arkile, et al., Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives
as antitubercular and antioxidant agent, Bioorg. Med. Chem. Lett. 26 (2016) 561-569;
(c) M.H. Shaikh, D.D. Subhedar, F.A.K. Khan, et al., 1,2,3-Triazole incorporated coumarin derivatives as a potential antifungal and
antioxidant agents, Chin. Chem. Lett. 27, (2016) 295-301
;
(d) A.P.G. Nikalje, M.S. Ghodke, F.A.K. Khan, J.N. Sangshetti, CAN catalyzed one-pot synthesis and docking study of some novel
substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents, Chin. Chem. Lett. 26 (2015) 108-112;
(e) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, et al., Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-
triazol-3-yl)methyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyri-dine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038.
[24] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 14th ed., ELBS, London, 1992.
[25] M. Burits, F. Bucar, Antioxidant activity of nigella sativa essential oil, Phytother. Res. 14 (2000) 323-328.
[26] (a) Schrodinger Suite 2015-4 QM-Polarized Ligand Docking protocol; Glide version 6.9, Schrodinger, LLC, New York, NY,
2015; Jaguar version 9.0, Schrodinger, LLC, New York, NY, 2015; QSite version 6.9, Schrodinger, LLC, New York, NY, 2015
;
(b) R.A. Friesner, R.B. Murphy, M.P. Repasky, et al., Extra precision glide: docking and scoring incorporating a model of hydrophobic
enclosure for protein-ligand complexes, J. Med. Chem. 49 (2006) 6177-6196 and related references cited theirin.
[27] (a) C.A. Lipinski, L. Lombardo, B.W. Dominy, et al., Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3-26;
2014;
(c) Y.H. Zhao, M.H. Abraham, J. Le, et al., Rate limited steps of human oral absorption and QSAR studies, Pharm. Res. 19 (2002)
1446-1457.
[28] S.G. Alvarez, M.T. Alvarez, A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in
high purity and yield, Synthesis 4 (1997) 413-414.
[30] P. Ertl, B. Rohde, P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment based contributions and its
application to the prediction of drug transport properties, J. Med. Chem. 43 (2000) 3714-3717.
Page 8 of 8