Table 1. Asymmetric Anti-Selective Hydrogenation Using the Ir Catalysta
entry
Ir catalyst (mol %)
ligand
additive
H2 (atm)
time (h)
yieldb (%)
anti/sync
eed (%)
1
2
3
4
5
6
7
8e
9
10
11
12
13
14
3
3
3
3
3
3
3
3
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-MeO-BIPHEP
(S)-BINAP
100
100
100
60
30
4.5
1
3
24
3
71
82
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
78
90
74
80
84
93
92
92
92
92
83
84
91
NaI
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
NaBARF
quant
quant
quant
quant
91
90
quant
98
87
82
87
n.r.
12
24
24
96
96
96
96
96
96
24
24
1
1
4.5
4.5
4.5
4.5
4.5
4.5
0.5
0.5
0.5
3
(S)-Tol-BINAP
(S)-SEGPHOS
(S)-MOP
1
a The reaction was carried out by using the Ir-ligand-NaBARF complex (Ir/ligand/NaBARF ) 1:1.3:1) and NaOAc (1 equiv) in AcOH under hydrogen
1
atmosphere. b Yield in two steps. c Determined by H NMR analysis. d Determined by HPLC analysis. e No freeze-thaw operation.
tion are essential for smooth reaction and make it difficult
to run this hydrogenation in a practical sense. Herein, we
report an anti-selective asymmetric hydrogenation of R-amino-
â-keto esters via DKR under low hydrogen pressure cata-
lyzed by an easy-handled cationic iridium complex with
tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF) as a
counterion.
In our effort to expand the utility of the first-generation Ir
catalyst into hydrogenation via DKR under mild reaction
conditions, we examined various additive effects in the
preparation of the catalyst (Table 1). The first-generation
iridium complex prepared from [IrCl(cod)]2, (S)-MeO-
BIPHEP, and sodium iodide previously reported by us5
afforded the anti-â-hydroxy-R-amino ester with 90% ee in
82% yield under high hydrogen pressure (100 atm) (entries
1 and 2). The enantioselectivity could be improved by the
addition of sodium iodide,7 which, however, was found to
retard the reaction. Therefore, we chose the condition
whereby sodium iodide was removed from the first-genera-
tion catalyst as the starting point for reoptimization. So we
examined again various additives, such as phthalimide,8
tetrabutylammonium bromide, potassium fluoride, or silver
trifluoroacetate instead of sodium iodide, but no improvement
was observed in the stereoselectivity, yield, and efficiency
of the catalyst. Recently, Pfaltz’s group9 reported highly
enantioselective hydrogenation of alkenes using the Ir-
PHOX catalyst in combination with the BARF counterion,10
which is known to stabilize the Ir complex and accelerate
(3) (a) Okamoto, N.; Hara, O.; Makino, K.; Hamada, Y. Tetrahedron:
Asymmetry 2001, 12, 1353-1358. (b) Reference 2i. (c) Makino, K.; Henmi,
Y.; Hamada, Y. Synlett 2002, 613-615. (d) Makino, K.; Kondoh, A.;
Hamada, Y. Tetrahedron Lett. 2002, 43, 4695-4698. (e) Okamoto, N.; Hara,
O.; Makino, K.; Hamada, Y. J. Org. Chem. 2002, 67, 9210-9215. (f)
Makino, K.; Suzuki, T.; Awane, S.; Hara, O.; Hamada, Y. Tetrahedron
Lett. 2002, 43, 9391-9395. (g) Henmi, Y.; Makino, K.; Yoshitomi, Y.;
Hara, O.; Hamada, Y. Tetrahedron: Asymmetry 2004, 15, 3477-3481. (h)
Suzuki, T.; Makino, K.; Hamada, Y. Peptide Sci. 2003, 2004, 57-60. (i)
Makino, K.; Henmi, Y.; Terasawa, M.; Hara, O.; Hamada, Y. Tetrahedron
Lett. 2005, 46, 555-558. (j) Makino, K.; Nagata, E.; Hamada, Y.
Tetrahedron Lett. 2005, 46, 6827-6830.
(4) For anti-selective asymmetric hydrogenation via DKR using Ru
catalyst, see: (a) Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y. Angew.
Chem., Int. Ed. 2004, 43, 882-884. (b). Lei, A.; Wu, S.; He, M.;. Zhang,
X. J. Am. Chem. Soc. 2004, 126, 1626-1627. (c) Mordant, C.; Dunkelmann,
P.; Ratovelomanana-Vidal, V.; Geneˆt, J. P. Chem. Commun. 2004, 1296-
1297. (d) Mordant, C.; Dunkelmann, P.; Ratovelomanana-Vidal, V.; Geneˆt,
J.-P. Eur. J. Org. Chem. 2004, 3017-3026.
(2) For syn-selective asymmetric hydrogenation via DKR using Ru
catalyst, see: (a) Noyori, R.; Ikeda, T.; Ohkuma, T.; Widhalm, M.;
Kitamura, M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi,
T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134-9135. (b) Geneˆt,
J.-P.; Mallart, S.; Juge, S. French Patent 8911159, 1989. (c) Mashima, K.;
Matsumura, Y.; Kusano, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki,
T.; Akutagawa, S.; Takaya, H. J. Chem. Soc., Chem. Commun. 1991, 609-
610. (d) Geneˆt, J.-P.; Pinel, C.; Mallart, S.; Juge, S. Thorimbert, S.; Laffitte,
J. A. Tetrahedron: Asymmetry 1991, 2, 555-567. (e) Kitamura, M.;
Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, 144-152. (f)
Mashima, K.; Kusano, K.; Sato, N.; Matsumura, Y.; Nozaki, K.; Kumoba-
yashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H. J.
Org. Chem. 1994, 59, 3064-3076. (g) Geneˆt, J.-P.; de Andrade, M. C. C.;
Ratovelomanana-Vidal, V. Tetrahedron Lett. 1995, 36, 2063-2066. (h)
Coulon, E.; de Andrade, M. C. C.; Ratovelomanana-Vidal, V.; Geneˆt, J.-P.
Tetrahedron Lett. 1998, 39, 6467-6470. (i) Makino, K.; Okamoto, N.; Hara,
O.; Hamada, Y. Tetrahedron: Asymmetry 2001, 12, 1757-1762. (j) Mohar,
B.; Valleix, A.; Desmurs, J.-R.; Felemez, M.; Wagner, A.; Mioskowski, C.
Chem. Commun. 2001, 2572-2573.
(5) Makino, K.; Hiroki, Y.; Hamada, Y. J. Am. Chem. Soc. 2005, 127,
5784-5785.
(6) Makino, K.; Fujii, T.; Hamada, Y. Tetrahedron: Asymmetry 2006,
17, 481-485.
(7) Additive effect of I-: (a) Spindler, F.; Pugin, B.; Blaser, H.-U. Angew.
Chem., Int. Ed. 1990, 29, 558-559. (b) Morimoto, T.; Nakajima, N.;
Achiwa, K. Chem. Pharm. Bull. 1994, 42, 1951-1953. (c) Morimoto, T.;
Nakajima, N.; Achiwa, K. Synlett 1995, 748-750.
(8) Additive effect of phthalimide: (a) Morimoto, T.; Suzuki, N.; Achiwa,
K. Heterocycles 1996, 43, 2557-2560. (b) Morimoto, T.; Achiwa, K.
Tetrahedron: Asymmetry 1995, 6, 2661-2664.
(9) (a) Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem., Int. Ed.
1998, 37, 2897-2899. (b) Pfaltz, A.; Blankenstein, J.; Hilgraf, R.; Ho¨rmann,
E.; McIntyre, S.; Menges, F.; Scho¨nleber, M.; Smidt, S. P.; Wu¨stenberg,
B.; Zimmermann, N. AdV. Synth. Catal. 2003, 345, 33-43.
4574
Org. Lett., Vol. 8, No. 20, 2006