Wagner ± Meerwein Rearrangements
845±853
structure is involved in the phenyl-group assistance, charac-
[9] H. C. Brown, G. Zweifel, J. Am. Chem. Soc. 1960, 82, 4708.
[10] D. Achet, D. Rocrelle, I. Murengezi, M. Delmas, A. Gaset, Synthesis
986, 643.
terized by partial C �OH bond cleavage coupled with a
a
2
1
weak Ph�C interaction. In contrast, b-hydrogen participation
a
[
11] a) P. Ausloos, S. G. Lias, R. Gorden, Jr., J. Chem. Phys. 1963, 39, 3341;
b) P. Ausloos, Ion-Molecule Reactions (Ed.: J. L. Franklin), Plenum,
New York, 1970; c) P. Ausloos, S. G. Lias, J. Chem. Phys. 1962, 36,
involves a much tighter TS structure, characterized by
significant H(D)�Ca bonding and limited C �OH bond
a
2
3
163; d) S. G. Lias, P. Ausloos, J. Chem. Phys. 1962, 37, 877.
cleavage. Finally, b-methyl group participation in 2s
in-
H
[
12] Neutralization of the O-protonated ethers, arising from addition of
volves a borderline TS structure, in which intense Me�C
a
isomeric [C
9
H
11 ] to methanol, may proceed through several path-
bonding is coupled with a pronounced C �OH bond
a
2
ways, including proton transfer to the substrate itself, to the walls of
the reaction vessel, or to adventitious bases that are either initially
added to the gaseous mixture or formed by its radiolysis.
elongation.
d) It is a generally accepted view[5, 16a] that neighboring-group
Ï
[
13] According to Schemes 2 and 7, [m/z 150] ꢁ k
15)[1b], [m/z 121] ꢁ k [1s] k14[1b], and [m/z 122] ꢁ k15[1b]. From
these relations, 0.5k
/k14 {0.5g(1 d)[1b]}/{(d � g)[1s]} and 0.5k
15 {0.5g(1 d)[1b]}/{(1 g)[1s]}, with g [m/z 150]/[m/z 151] and
d [m/z 121]/[m/z 122]. Using the g 1.46 and d 2.96 values of
Table 2, measured for products 5 from the 1s/1b* systems, 0.5k
.01 and 0.5k
1
[1s], [m/z 151] ꢁ (k14
participation in ionic processes is enhanced as the nucleophi-
licity and the dielectricity of the reaction medium decrease.
Accordingly, the results of the present and the preceding[
k
1
1
1
/
1]
k
papers demonstrate that gas-phase solvolysis of 1sH
and 2sH
1
/k14
involves unsubstituted phenyl-group anchimeric assistance (a
kD process), whereas the analogous acetolysis of 1-phenyl-2-
2
1
/k15 1.23. These phenomenological values reflect three
different factors, namely: i) the relative population of active con-
formers of O-protonated 1-phenyl-2-propanol (Scheme 1) involved in
ethyl tosylate proceeds through competing solvent- (a k
S
[8b]
process) and anchimeric-assisted (k ) mechanisms,
and
the H/D anchimeric assistance to H O loss; ii) the activation
D
2
that of 1-phenyl-2-propyl tosylate by predominant anchimer-
parameters governing hydrogen-atom anchimeric assistance in each
conformer; iii) the isotope effect on these activation parameters.
Indeed, the above values significantly diverge from those derived from
ic- and solvent-unassisted unimolecular dissociation (a k
C
[
8a]
process).
the rac-1/1b systems, that is 0.5k
where no differences in factors i) and ii) are present and, therefore, the
only rate difference is due to factor iii).
1
/k14 1.22 and 0.5k /k15 1.04,
1
[
[
[
14] a) S. S. Glad, F. Jensen, J. Am. Chem. Soc. 1994, 116, 9302, and
Acknowledgements
references therein; b) X. Duan, S. Scheiner, J. Am. Chem. Soc. 1992,
1
14, 5849.
This research was supported by the Italian Ministero dellꢁUniversit aÁ e della
Ricerca Scientifica e Tecnologica (MURST) and by the Italian National
Research Council (CNR). We thank Anna Troiani for help with some of the
early experimental work.
15] a) S. S. Glad, F. Jensen, J. Am. Chem. Soc. 1997, 119, 227, and
references therein; b) K. C. Westaway, T. V. Pham, Y. Fang, J. Am.
Chem. Soc. 1997, 119, 3670, and references therein.
16] a) S. E. Scheppele, Chem. Rev. 1972, 72, 511, and references therein;
b) D. J. DeFrees, M. Taagepera, B. A. Levi, S. K. Pollack, K. D.
Summerhays, R. W. Taft, M. Wolfsberg, W. J. Hehre, J. Am. Chem.
Soc. 1979, 101, 5532.
[
1] A. Filippi, M. Speranza, Chem. Eur. J. 1999, 5, 834 ± 844.
[
2] a) D. J. Cram, J. Am. Chem. Soc. 1949, 71, 3863; b) D. J. Cram, R.
Davis, J. Am. Chem. Soc. 1949, 71, 3875; c) D. J. Cram, J. Am. Chem.
Soc. 1964, 86, 3767; d) C. J. Lancelot, D. J. Cram, P. von R. Schleyer,
Carbonium Ions, Vol. III (Eds.: G. A. Olah, P. von R. Schleyer) Wiley,
New York, 1972, chapter 27; e) S. Winstein, B. K. Morse, E. Grunwald,
K. C. Schreiber, J. Corse, J. Am. Chem. Soc. 1952, 74, 1113.
[17] For an S
from 1.31 to 0.99 as the dihedral angle between the C
the incipient p-orbital at C is varied from 180(0) to 908 (V. J.
Shiner, Jr., J. S. Humphrey, Jr., J. Am. Chem. Soc. 1963, 85, 2416). The
b-D -SKIE on the ethanolysis of cis-4-tert-butylcyclohexyl brosylate
N
1 reaction on tertiary chlorides in solution, b-D
1
-SKIE varies
�
H(D) bond and
b
a
1
amounts to 1.436, when the b-D is axial, and to 1.096, when the b-D is
equatorial (V. J. Shiner, Jr., J. G. Jewett, Jr., J. Am. Chem. Soc. 1965,
87, 1382).
[
3] a) H. C. Brown, The Transition State, Special Publ. No. 16, The
Chemical Society, London, 1962, p. 149; b) H. C. Brown, K. J. Morgan,
F. J. Cloupek, J. Am. Chem. Soc. 1965, 87, 2137.
[18] J. L. Fry, G. J. Karabatsos, Carbonium Ions (Eds.: G. A. Olah,
P. von R. Schleyer) Wiley, New York, 1970, p. 526. See also: a) F.
Cacace, M. E. Crestoni, S. Fornarini, J. Am. Chem. Soc. 1992, 114,
6776; b) M. E. Crestoni, S. Fornarini, M. Lentini, M. Speranza, J. Phys.
Chem. 1996, 100, 8285.
[19] M. F. Hawthorne, E S. Lewis, J. Am. Chem. Soc. 1958, 80, 4296.
[20] D. Liotta, M. Saindane, L. Waykole, J. Stephens, J. Grossman, J. Am.
Chem. Soc. 1988, 110, 2667.
[
4] a) H. C. Brown, R. Bernheimer, C. J. Kim, S. E. Scheppele, J. Am.
Chem. Soc. 1967, 89, 370; b) H. C. Brown, C. J. Kim, J. Am. Chem. Soc.
1968, 90, 2080; c) W. H. Saunders Jr., S. Asperger, D. H. Edison, J. Am.
Chem. Soc. 1958, 80, 2421; d) S. L. Loukas, M. R. Velkou, G. A.
Gregoriou, J. Chem. Soc. Chem. Commun. 1969, 1199; e) S. L. Loukas,
F. S. Varveri, M. R. Velkou, G. A. Gregoriou, Tetrahedron Lett. 1971,
1803.
[
[
5] B. Capon, S. P. McManus, Neighboring Group Participation Vol. 1,
Plenum, New York, 1976.
6] a) D. E. Sunko, S. Borcic, Isotope Effects in Chemical Reactions (Eds.:
C. J. Collins, N. S. Bowman), Van Nostrand Reinhold, New York, 1970,
chapter 3; b) V. J. Shiner, Jr., Isotope Effects in Chemical Reactions
[21] An alternative rationale can be found in some minor contribution of
tunneling in the more strained TS structure of the b-hydrogen
2
participation in H O loss from O-protonated 2-phenyl-1-propanol
relative to the that of the same process in O-protonated 1-phenyl-2-
propanol (see ref. [14b]). Strain is expected to be higher in the first TS
(
1
Eds.: C. J. Collins, N. S. Bowman), Van Nostrand Reinhold, New York,
970, chapter 2; c) S. E. Scheppele, Chem. Rev. 1972, 72, 511.
structure than in the latter one on account of the more intense
H(D)
tion.
[22] The low [b-D
ing [b-D -SKIE]Ph, may not only reflect later TS structures, but also a
less extensive frontside participation.
�
Ca interaction required for the same C �OH2 bond elonga-
a
[
[
7] a) W. H. Saunders, Jr., R. Glaser, J. Am. Chem. Soc. 1960, 82, 3586;
b) D. J. Cram, J. Tadanier, J. Am. Chem. Soc. 1959, 81, 2737; c) C. C.
Lee, L. Noszko, Can. J. Chem. 1966, 44, 2491.
1
1 H
-SKIE]Me and [b-D -SKIE] , relative to the correspond-
1
8] a) K. Funatsu, M. Fujio, Y. Tsuno, Mem. Fac. Sci. Kyushu Univ. Ser. C
1981, 13, 125; b) K. Funatsu, M. Kimura, T. Furukama, M. Fujio, Y.
Tsuno, Mem. Fac. Sci. Kyushu Univ. Ser. C 1984, 14, 343.
Received: June 16, 1998 [F1212]
Chem. Eur. J. 1999, 5, No. 3
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
0947-6539/99/0503-0853 $ 17.50+.50/0
853