Page 7 of 8
Organic & Biomolecular Chemistry
DOI: 10.1039/C4OB02266A
a
Dr. A. Manjula, M. Bhaskar Reddy, M. Shailaja, Crop Protection
Chemicals Division, CSIRꢀIndian Institute of Chemical Technology,
Hyderabad, India, Eꢀmail: manjula@iict.res.in.
energy conformers of C4TB and C5TB were considered for building the
model structures of hostꢀguest complexes with set of six bisammonium
ions Am (m = 1-6) (Figure 2). The complexes C4TB…Am (m = 1-6) and
C5TB…Am (m = 1-6) and the simple model structures such as C4-
(NH4)+, C5-(NH4)+, TB1-(NH4)+, TB2-(NH4)+, C4-(CH3NH3)+, C4-
b Dr. G. N. Sastry, J. R. Premkumar, Centre for Molecular Modelling,
55 CSIRꢀIndian Institute of Chemical Technology, Hyderabad, India, Eꢀ
mail: gnsastry@iict.res.in.
5
c
(CH3CH2NH3)+ and C4-(CH3CH2CH2NH3)+ in Scheme
3 were
Dr. A. V. S. Sarma, K. Sirisha, Centre for Nuclear Magnetic
Resonance and Structural Chemistry, CSIRꢀIndian Institute of
Chemical Technology, Hyderabad, India.
optimized at PCMꢀM06ꢀ2X/6ꢀ31G(d) level of theory. The absence of
imaginary frequencies confirmed that all the structures were minima in
the potential energy surface at PCMꢀM06ꢀ2X/6ꢀ31G(d) level of theory.
1
60 Electronic Supplementary Information (ESI) available: H and 13C NMR
spectra of all new compounds, optimization structures at DFT level and
the cartesian coordinates are provided in the supporting information. See
DOI: 10.1039/b000000x/
10 The energetics of the dicationic complexes were further fine tuned by
improving the quality of the basis set. We used M06ꢀ2X[19] method and
the correlation consistent basis set with triple zeta quality ccꢀpVTZ[20] for
the binding energy calculations. The reported binding energies (BEs)
1
2
3
A. J. McConnell, P. D. Beer, Angew. Chem. Int. Ed. 2012, 51, 5052;
A. K. Mandal, M. Suresh, P. Das, A. Das, Chem. Eur. J. 2012, 18,
3906; M. Kruppa, B. König, Chem. Rev. 2006, 106, 3520; B. Linton,
A. D. Hamilton, Chem. Rev. 1997, 97, 1669; HꢀJ. Schneider, Angew.
Chem. Int. Ed. 1991, 30, 1417; A. S. Mahadevi, G. N. Sastry, Chem.
Rev. 2013, 113, 2100.
G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev. 2004, 104,
2723; K. Kimura, R. Mizutani, M. Yokoyama, R. Arakawa, Y.
Sakurai, J. Am. Chem. Soc. 2000, 122, 5448; H. Sakamoto, K.
Kimura, Y. Koseki, T. Shono, J. Chem. Soc. Perkin Trans 2 1987,
1181; C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 7017; J. M. Lehn,
Angew. Chem. Int. Ed. 1988, 27, 89ꢀ112.
A. Späth, B. König, Beilstein J. Org. Chem 2010, 6, 1; M. Sunkur, D.
Baris, H. Hosgoren, M. Togrul, J. Org. Chem. 2008, 73, 2570; G. W.
Gokel, W. M. Leevy, M. E. Weber, Chem. Rev, 2004, 104, 2723;
Y.Turgut, H. Hosgoren, Tetrahedron: Asymmetry 2003, 14, 3815; S.
K. Kim, M. Y. Bang, SꢀH. Lee, K. Nakamura, SꢀW. Cho, J. Yoon, J.
Inclusion Phenom. Macrocyclic Chem. 2002, 43, 71; W. S. Bryant, I.
A. Guzei, A. L. Rheingold, J. S. Merola, H. W. Gibson, J. Org.
Chem. 1998, 63, 7634; X. X. Zhang, J. S. Bradshaw, R. M. Izatt,
Chem. Rev. 1997, 97, 3313; P. R. Ashton, P. J. Campbell, E. J. T.
Crystal, P. T. Glink, S. Menzer, D. Philip, N. Spencer, J. F. Stoddart,
P. A. Tasker, D. J. Williams, Angew. Chem. Int. Ed. 1995, 34, 1865;
A. P. Silva, K. R. A. A. Sandanayake, Angew. Chem. Int. Ed. 1990,
29, 1173; M. Kim, G. Gokel, J. Chem. Soc., Chem. Commun. 1987,
1686.
65
70
were calculated by subtracting the total energy of the complex (Ecomplex
)
15 and the sum of the total energies of the individual fragments (Ehost and
Eguest) in their distorted environment. The BEs were calculated in three
ways as shown in the equations 2, 3 and 4. Here, Eguest* indicates that the
energy of the folded conformation bisammonium ion in the hostꢀguest
complex.
20
75
BE1 = [Ecomplex – (Ehost + Eguest)]
BE2 = [Ecomplex – (Ehost + Eguest*)]
BEavg = (BE1+BE2)/2
(2)
(3)
(4)
80
All the geometry optimization and the BEs calculations have been done
using Gaussian 09 program package.[21] The influence of bulk solvent
were included by means of PCM[22] considering methanol as a solvent.
The effect of solvation has been looked with various solvent with
25 dielectric constant 80.0 D (water) 47.0 D (DMSO) and 33.6 D (methanol)
for the C4-NH4+ system (see Table S5). The BEs of C4-NH4+ in presence
of water and in presence of methanol are found to be closer and the
difference is lower than 1.00 kcal/mol. Thus we have considered
‘Methanol’ for finding the solvent effect on supramolecular hostꢀguest
30 binding energy, since the difference between the dielectric constants of
‘Methanol’ and ‘Deuteratedꢀmethanol’ (33.7 D) is 0.1 D. Energy
decomposition analysis have been carried out using the reduced
variational space (RVS) technique implemented in the GAMESS program
package[23] at HF/6ꢀ31G(d) level of theory. This technique splits the
35 binding energy of a dimer into various components, such as electrostatic
(Ees), exchange repulsion (Ex), polarization (POL) and, charge transfer
(CT) components. The Ees component corresponds to the classical
electrostatic interaction between the unperturbed charge distributions of
the prepared fragments and it is usually attractive. The Ex term is the
40 energetic contribution arising from the repulsion between the occupied
molecular orbitals of the two fragments. The POL and CT components
are associated with the intramolecular and intermolecular orbital
relaxation energies of the two fragments. The POL and CT components
can be further divided into two individual components viz., POLg, POLh,
85
90
4
5
J. Tröger, J. Prakt. Chem. 1887, 36, 225.
M. A. Spielman, J. Am. Chem. Soc. 1935, 57, 583; E. Wagner, J. Am.
Chem. Soc. 1935, 57, 1296; T. R. Miller, E. C. Wagner, J. Am. Chem.
Soc. 1941, 63, 832; H. Rutter, J. Am. Chem. Soc., 1952, 74, 3434; M.
Häring, Helv. Chim. Acta 1963, 46, 2970.
95
6
C. S. Wilcox, Tetrahedron Lett. 1985, 26, 5749; I. Sucholeiki, V.
Lynch, L. Phan, C. S. Wilcox, J. Org. Chem. 1988, 53, 98; B. G.
Bag, U. Maitra, Synth. Commun. 1995, 25, 1849; H. Salez, A.
Wardani, M. Demeunynck, A. Tatibouet, J. Lhomme, Tetrahedron
Lett. 1995, 36, 1271; A. Hansson, J. Jensen, O. F. Wendt, K.
Warnmark, Eur. J. Org. Chem. 2003, 3179; Z. Li, X. Xu, Y. Peng, Z.
Jiang, C. Ding, X. Qian, Synthesis 2005, 1228; Z. Li, X. Xu, Y. Peng,
Z. Jiang, C. Ding, X. Qian, Synthesis 2005, 1230; S. Satishkumar, M.
Periasamy, Tetrahedron: Asymmetry 2006, 17, 1116; S. Satishkumar,
M. Periasamy, Tetrahedron: Asymmetry 2009, 20, 2257; T.
Kamiyama, M. S. Ozer, E. Otth, J. Deska, J. Vengros,
ChemPlusChem, 2013, 78, 1510ꢀ1516; M. B. Reddy, A. Manjula, B.
V. Rao, B. S. Sridhar, Eur. J. Org. Chem. 2012, 312; for reviews on
Tröger’s base see: Advances in Heterocyclic Chemistry by A. R.
Katritzky, 2007, 93, 1; S. Sergeyev, Helv. Chim. Acta 2009, 92, 415;
O. V. Runarsson, J. Artacho, K. Warnmark, Eur. J. Org. Chem. 2012,
7015; A. L. Whiting, K. I. Dubicki, F. Hof, Eur. J. Org. Chem. 2013,
6802; P. Ondrisek, R. Schwenk, J. Cvengros, Chem. Commun., 2014,
50, 9168.
100
105
110
115
120
45 CTgꢀh and CThꢀg
.
Acknowledgments
7
8
A. P. Hansson, P. O. Norrby, K. Warnmark, Tetrahedron Lett. 1998,
39, 4565; K. Kim, Jꢀ. I. Choe, Bull. Korean. Chem. Soc. 2006, 27,
1737.
C. S. Wilcox, M. D. Cowart, Tetrahedron Lett. 1986, 27, 5563; J. C.
Adrian, C. S. Wilcox, J. Am. Chem. Soc. 1989, 111, 8055; J. C.
Adrian, C. S. Wilcox, J. Am. Chem. Soc. 1991, 113, 678; T. H.
Webb, H. Suh, C. S. Wilcox, J. Am. Chem. Soc. 1991, 113, 8554; J.
C. Adrian, C. S. Wilcox, J. Am. Chem. Soc. 1992, 114, 1398; M. J.
Authors thank Director, IICT for facilities. MBR, JRP and KS thanks
CSIR, New Delhi for Fellowship. MS thanks DST for fellowship.
Financial support from NMB project at CSIRꢀIICT is acknowledged.
50 Notes and references
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 7