C O M M U N I C A T I O N S
as the ability of Cu-BTTri (1) to incorporate en molecules that afford
a highly selective affinity for CO2 binding. Significantly, the en-
functionalized framework 1-en exhibits a higher uptake of CO2 at
very low pressures compared with the nongrafted material and
displays a record isosteric heat of adsorption of 90 kJ/mol. Future
efforts will attempt to increase the CO2 capture capacity by
extending this approach to frameworks containing larger pores and
to adjust the heat of adsorption by varying the amine substituents11
and investigating the effects of the presence of water.12
Acknowledgment. This research was funded by the Sustainable
Products & Solutions Program at the University of California,
Berkeley and General Motors Corporation. We thank the 1851
Royal Commission and the American-Australian Association for
Research Fellowships for support of D.M.D. and Dr. S. Horike and
Dr. H. J. Choi for helpful discussions.
Figure 4. Isosteric heat of adsorption for CO2 in 1 (black) and 1-en (red).
Supporting Information Available: Complete experimental details,
including characterization data and sorption analysis data. This material
References
(1) (a) Powell, C. E.; Qiao, G. G. J. Membr. Sci. 2006, 279, 1. (b) Figueroa,
J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D. Int. J.
Greenhouse Gas Control 2008, 2, 9.
(2) (a) Harlick, P. J. E.; Tezel, F. H. Microporous Mesoporous Mater. 2004, 76,
71. (b) Jia, W.; Murad, S. J. Chem. Phys. 2005, 122, 234708. (c) Lee, K. B.;
Beaver, M. G.; Caram, H. S.; Sircar, S. Ind. Eng. Chem. Res. 2008, 47, 8048.
(d) Xu, X.; Zhao, X.; Sun, L.; Liu, X. J. Nat. Gas Chem. 2008, 17, 391.
(3) (a) Franchi, R. S.; Harlick, P. J. E.; Sayari, A. Ind. Eng. Chem. Res. 2005,
44, 8007. (b) Hicks, J. C.; Drese, J. H.; Fauth, D. J.; Gray, M. L.; Qi, G.;
Jones, C. W. J. Am. Chem. Soc. 2008, 130, 2902. (c) Zelenak, V.; Halamova,
D.; Gaberova, L.; Bloch, E.; Llewellyn, P. Microporous Mesoporous Mater.
2008, 116, 358.
(4) (a) Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.
(b) Hayashi, H.; Coˆte, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M.
Nat. Mater. 2007, 6, 501. (c) Ma, S.; Sun, D.; Wang, X.-S.; Zhou, H.-C.
Angew. Chem., Int. Ed. 2007, 46, 2458. (d) Chen, B.; Ma, S.; Hurtado,
E. J.; Lobkovsky, E. B.; Zhou, H.-C. Inorg. Chem. 2007, 46, 8490. (e)
Dietzel, P. D. C.; Johnsen, R. E.; Fjellvåg, H.; Bordiga, S.; Groppo, E.;
Chavan, S.; Blom, R. Chem. Commun. 2008, 5125. (f) Bae, Y.-S.; Farha,
O. K.; Spokoyny, A. M.; Mirkin, C. A.; Hupp, J. T.; Snurr, R. Q. Chem.
Commun. 2008, 4135. (g) Bastin, L.; Ba´rcia., P. S.; Hurtado, E. J.; Silva,
J. A. C.; Rodrigues, A. E.; Chen, B. J. Phys. Chem. C 2008, 112, 1575.
(h) Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.;
Hamon, L.; De Weireld, G.; Chang, J.-S.; Hong, D.-Y.; Hwang, Y. K.;
Jhung, S. H.; Fe´rey, G. Langmuir 2008, 24, 7245. (i) Bae, Y.-S.; Mulfort,
K. L.; Frost, Houston; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp,
J. T.; Snurr, R. Q. Langmuir 2008, 24, 8592. (j) Caskey, S. R.; Wong-Foy,
A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870. (k) Park, H. J.;
Suh, M. P. Chem.sEur. J. 2008, 14, 8812. (l) Thallapally, P. K.; Tian, J.;
Kishan, M. R.; Fernandez, C. A.; Dalgarno, S. J.; McGrail, P. B.; Warren,
J. E.; Atwood, J. L. J. Am. Chem. Soc. 2008, 130, 16842. (m) Bae, Y.-S.;
Farha, O. K.; Hupp, J. T.; Snurr, R. Q. J. Mater. Chem. 2009, 19, 2131.
(n) Keskin, S.; Sholl, D. S. Ind. Eng. Chem. Res. 2009, 48, 914. (o)
Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O’Keeffe, M.; Yaghi,
O. M. J. Am. Chem. Soc. 2009, 131, 3875.
(5) (a) Arstad, B.; Fjellvåg, H.; Kongshaug, K. O.; Swang, O.; Blom, R.
Adsorption 2008, 14, 755. (b) Costa, J. S.; Gamez, P.; Black, C. A.;
Roubeau, O.; Teat, S. T.; Reedijk, J. Eur. J. Inorg. Chem. 2008, 1551.
(6) (a) Wang, Z.; Cohen, S. M. J. Am. Chem. Soc. 2007, 129, 12368. (b) Goto,
Y.; Sato, H.; Shinkai, S.; Sada, K. J. Am. Chem. Soc. 2008, 130, 14354.
(7) Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim,
J.; Vimont, V.; Daturi, M.; Serre, C.; Fe´rey, G. Angew. Chem., Int. Ed.
2008, 47, 4144.
(8) (a) Dinca, M.; Yu, A. F.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 8904.
(b) Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long,
J. R. J. Am. Chem. Soc. 2006, 128, 16876. (c) Dinca, M.; Han, W. S.; Liu,
Y.; Dailly, A.; Brown, C. M.; Long, J. R. Angew. Chem., Int. Ed. 2007,
46, 1419.
Figure 5. Gas cycling experiment for 1-en at 30 °C, employing a flow of
15% CO2 in N2 followed by a flow of pure N2.
a maximum value of 90 kJ/mol occurs, indicating a strong and
selective interaction of CO2 with the alkylamine functionalities. This
value compares well with previously reported data obtained for
alkylamine-functionalized silicas (100 kJ/mol).10a To our knowl-
edge, this is the highest binding energy reported to date for CO2
adsorption in a metal-organic framework, surpassing the previous
record of 63 kJ/mol in MIL-1004h and the values for amine-
functionalized frameworks in which the NH2 groups are directly
bound to aromatic ligands (50 kJ/mol).6 The high binding energy
for CO2 in 1-en at low coverage is indicative of a chemisorption
interaction, akin to the chemisorption mechanisms that are operative
for CO2 separation in industry using alkylamine solvents. As the
available alkylamine groups bind CO2 with increasing pressure, Qst
decreases, approaching the values observed for 1 as CO2 is adsorbed
onto less reactive surface sites.
The reversibility of the CO2 adsorption process in 1-en during
gas cycling at 30 °C was measured using a thermogravimetric
analysis apparatus, with use of a 15% CO2 in N2 mixture to simulate
the major components of flue gas (see Figure 5). A 0.75 wt %
weight change was observed over repeated cycles, indicating that
the material is able to withstand cyclic exposure to the mixed gas
stream. Significantly, the CO2 adsorption ability of 1-en is
maintained over repeated cycling, and the material can be regener-
ated by switching the gas stream to N2. This may render the material
suitable for use as an adsorbent in a pressure swing absorption type
process for CO2 capture.
(9) Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti,
C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. Chem. Mater.
2006, 18, 1337.
(10) (a) Kno¨fel, C.; Descarpentries, J.; Benzaouia, A.; Zelea´k, V.; Mornet, S.;
Llewellyn, P. L.; Hornebecq, V. Microporous Mesoporous Mater. 2007,
99, 79. (b) Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low,
J. J.; Yaghi, O. M.; Snurr, R. Q. J. Am. Chem. Soc. 2008, 130, 406.
(11) Dibenedetto, A.; Aresta, M.; Fragale, C.; Narracci, M. Green Chem. 2002, 4,
439.
(12) Yazaydin, A. O.; Benin, A. I.; Faheem, S. A.; Jakubczak, P.; Low, J. J.;
Willis, R. R.; Snurr, R. Q. Chem. Mater. 2009, 21, 1425.
The foregoing results demonstrate the use of BTTri3- in
generating an air- and water-stable analogue of Cu-BTT, as well
JA903411W
9
8786 J. AM. CHEM. SOC. VOL. 131, NO. 25, 2009